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S_Om RY

The primary objective of this Phase I Program was to identify, define
and develop technology for the design of advanced eombustors, with signifi-
cantly lower pollutant exhat_t emissions levels than those of current Leeh-

nology combustors, for use in advanced CTOL commercial aircraft engines. The

efforts in this 18-month program were specifically directed toward screening

and evaluating a large number and variety of combustor design approaches for
obtaining low carbon monoxide (CO), unburned hydrocarbons (HC), oxides of
nitrogen (NOx) and smoke emissions levels.

The key task elements of these efforts involved the definition of

advanued combustor desist approaches for obtaining the objective low pollu-

tant emissions levels, the aeromechanleal design of CF6-50 englne-size
versions of these approaches, the fabrication of full annular versions of

these combustor designs and the developmental evaluation of the combustor test

configurations. These test configurations were designed to fit within the

combustor housing of the current production version of the General Electric

CF6-50 engine and were evaluated, at elevated pressures, in n test rig _ich

exactly duplicates the combustor housing of the CF6-50 engine In addition

to detailed emissions level data, detailed data on the other important
performance dlaracteristlcs of each test configuration were also obtained.
Also, data were obtained on the noise characteristics of several of the
combustor test configurations.

Versions of four basic advanced combustor design concepts, involving a
total of 34 test configurations, were evaluated in these development efforts.

Specifically, CF6-50 engine-slze versions of NASA Swirl-Can-Modular Combustors,
Lean Dome Single Annular Combustors, Lean Dome Dottle Annular Comb_stors and

Radlal/Axlal Staged Combustors were evaluated. Encouraging results were

obtained with versions of the latter two design concepts. Both of these

concepts feature the use of two discrete zones within the combustor, with

which the combustion process may be appropriately staged, to m/nlmize CO and

HC emissions levels at low engine power operating conditions as well as NOx
and smoke emissions levels at high engine power operating conditions. With
versions of these two doslgns, CO and HC emissions levels at or near the

target levels were obtained. Significant reductions in NOx emissions levels

were also obtained with these two advanced eombustor design concepts, although
the low target level was not attained. In addition, smoke emission levels

below the target value were obtained. In addition, the other important

performance characteristics of these advanced eombustor designs were found

to be generally satisfactory, considering the early stage of their development.

Based on these results, it is concluded that significantly lower CO,

HC and NO x emissions levels than those of current technology combustors, along

with low smoke emission levels, are obtainable with staged eombustor design

concepts, such as the two concepts evolved in this program. It is further

concluded that acceptable ground ignition and altitude relight performance

can be expected with versions of these two staged combustor designs. However,

it is anticipated that obtaining acceptable exit temperature characteristics,
combustion stability characteristics and combustion efficlencles with these

1

J
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advanced designs at all engine operating conditions, particularly at the
intermediate power operating conditions, will necessitate substantial
additional development efforts. Extensive further development efforts appear
to be especially needed to define the preferred means of staging the combustion
process within these complex and sophisticated combustors and to define the
additional engine fuel control and supply systems capabilities needed to
operate such combustors. 7bus, it Is concluded that significant additional
development efforts will be required to provide versions oE these staged
combustor designs suitable for use in engines.

2
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INTRODUCT ION

Within recent years, the number of. Lurbine engine-powered aircraft in

both commercial and military service has increased at an extremely rapid

rate. This rapidly increasing usage of turbine engine-powered aircraft has

logically resulted in increased interest in assessing the contributions

of aircraft turbine engines to the air pollution problems confronting many
_tropolltan areas throughout the world. Therefore, several studies to define

the extent of these contributions have already been conducted and others are

in progress. In general, the studies conducted to date have shown that the "_

overall contributions of aircraft turbine engine operations to the air poilu-

% tion problems of metropolitan areas are quite small, as compared to those of
other contributors (Reference i). These studies have also shown that the

exhausts of aircraft turbine engines generally contain low concentrations of

gaseous and particulate emissions considered to be in the category of air

pollutants. The typically low concentrations of pollutant emissions are due i
to the continuous, well controlled and highly efficient nature of the combus-
tion processes in turbine euglnes and to the use of fuels which contain very

small quantities of impurities.

Nonetheless, even though relatively low concentrations and total amounts

are generated in most instances, the exhaust emissions in the category of
air pollutants resulting from the operations of aircraft turbine engines are

of concern. The specific aircraft turbine engine exhaust emissions

which are of possible concern from an air pollution standpoint consist of
carbon monoxide (CO), unburned or partially omidized hydrocarbons (HC), carbon

smoke paztlculate matter and oxides of nitrogen (NOx). The foremost concern

associated with these engine exhaust emissions appears to be their possible

impacts on the i_edlate areas surrounding major metropolitan airports. Because

of the operating characteristics of most current turbojet end turbofan engines,
the highest levels of these various objectionable exhaust constituents are

typically generated at engine operating modes that occur in and around airports.

Further, because large numbers of daily aircraft operations can occur in and

around a given airport, the cumulative exhaust emissions resulting from these

localized aircraft operatlons tend to be concentrated to some extent in the

airport vicinity.

For these reasons, the U.S. Environmental Protection Agency (EPA) con-

eluded that standards to regulate and minimize the quantities of CO, HC, NO x
and smoke emissions discharged by aircraft, when operating within or near

airports, are needed. Based on this flndlng, such standards were defined

for several different categories and types of fixed-wlng, commercial aircraft

engines and were issued in Ot,ly 1973. For the most part, these standards
become effective in 1979 (Reference 2).

The introduction of aircraft engine exhausts into the stratosphere is

another possible area of concern. Because of the relatively slow mixing rates

between the stratosphere and the troposphere, and the resulting tendencies

for materials introduced into the stratosphere to accumulate, it is believed

that the continuous introduction of some engine exheust products into the

i
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stratosphere by largo aircraft fleets mlghtD after extended time perlods, re-

sult in adverse environmental impacts. _le Introduction by aircraft engines

of NO x emissions into the stratosphere has, for example, been identifJed as

a particular area of possible concern. The possible impacts of the intro-
duction of these and other engine exhaust products into the stratosphere

have been the subject of the Climatic Impact Assessment Program, which has

been conducted by the U.S. Department of Transportation (Reference 3). The

preliminary findings of this very extensive program indicate that very low
NOx emisslon_ levels st high altitude erulse operating conditions may become

an important need in future transport aircraft engines (Reference 4). i
!

To minimize these possible adverse environmental effects, significant

development efforts to provide technology for the control and reduction of the

levels of the pollutant exhalmt emissions of aircraft turbine engines have

<_ a/ready been conducted by both government and industry organizations and i
meJor additional development efforts of this kind are currently underway.

Significant advances have already been made in the development of technology

for the design of engines with greatly reduced smoke emission levels. As a
result of these latter efforts, advanced transport aircraft engines, such as

the General Electric CF6 engines, with virtually invisible smoke emission

levels, have already been developed end placed into service. These latter

engines are, thus, already in compliance with the smoke emission standards

which have been issued by the EPA.

At the present time, therefore, the primary pollutant e_haust emissions

reduction technology needs of nonafterburnlng engines appear to involve the
reduction of CO and HC emissions levels at Idle operating conditions and the

reduction of NO x emissions levels during takeoff, climbout and, possibly,

cruise operations. In any nonafterburnlng engine, the source of these
emissions is, o_ course, its combustor. The attainment of these more favor-
able exhaust emissions characteristics in future engines, thus, primarily

involves providing improved and modified main combustors for use in th,,se

engines. Major combustor design technology advances appear to be needed to

obtain signiflcant_/eductlons in the levels of these gaseous pollutant
emissions.

To provide these needed eombustor design technology advances, the

Experimental Clean Combustor Program was initiated by the U.S. National

Aeronautics and Space Administration (NASA) in 1972 (Reference 5). The overall

objeetlvo of this major program is to define, develop and demonstrate tech-

nology for the design of low pollutant emissions combustors for use in advanced

commercial CTOL aircraft engines. The intent of these efforts is to generate

combustor design technology which is primarily applicable to advanced
co_nerelal aircraft engines with high cycle pressure ratios, in the range of
20 to 35. However, it is also intended that this technology be applicable

i to advanced military aircraft engines. Because the smoke emission levels of

advanced commercial and military aircraft engines have already been reduced to

low values, the primary focus of this major prog:am is on reducing the CO, HC

4
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and NO x emissions levels of these englnes. _le overall program is being
conducted in three sequential phases:

Phase I: Comhuator.-Screenlng

Phase II: Combustor Refinement ard Optimization

Phase Ill: Combustor-Engine Testing

The NASA/General Electric Experimental Clean Combustor Program is o_e

of the"programs =hat comprise the overall program. This program is being

carried out by the General Electric Aircraft Engine Group under contract to

_[ the NASA-Lewis Research Center. A description of the NASA/General Electric
Phase I Program, together with the results of this initial program phase, are

presented in this report. This Phase I Program was initiated in January

1973, and its design and development activities were com#leted in June 1974.

5
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CI_PTER I. DESCRIPTION OF EXPERIFfl_NTAL CLEAN coHguSTOR PROGRAM

1
OVERALL PROGRAM DESCRIPTION

The Experimental Clean Combustor Program is a multiyear effort which
is being conducted by the NASA-Lewls Research Center. The primary objectives I

of the overall program are: ]

• To generate and demonstrate the technology required to design and d

develop advanced commercial CTOL aircraft engines with significantly --

lower pollutant exhaust emissions level• than those of current

technology engines, i
• To demonstrate the attainment of =he target emission• level

reductions in tests of advanced commercial aircraft turbofan engines.
l

The intent of this major program is to obtain the objective pollutant 1
emissions level reductions by the development of advanced combu•tor designs,

rather than by the use of special engine operational techniques ant/or water i
injection methods. The program is aimed at generating advanced combuetor

design technology which is primarily applicable to advanced commercial CTOL

aircraft engines with high cycle pressure ratios, in the range of 20 to 35.

However, it is also intended that this technology be applicable to advanced

military aircraft engines. Because the smoke emission levels of advanced

commercial and military aircraft engines have already been reduced to low

values, the prlmaz7 focus of the program is on reducing the levels of the
gaseous pollutant emissions of these engines.

The NASA/General Electric Experimental Clean Combustor Program is one of

the programs.that comprise the overall program. This program is being

conducted by the General Electric Aircraft Engine Group under contract to _he
NASA-Lewls Research Center. The design and development efforts of this NASA/

General Electric program are specifically directed toward providing advanced
combuetors for use in the General Electric CF6-50 engine. This engine is an

advanced, high bypass turbofan engine in the 218 kN (50,000 Ib) rated thrust

class. This engine is in commercial service in the MeDonnel-Douglas De-10
Series 30 aircraft and in the Airbus Industrle A300B aircraft. While the

CF6-50 engine is the specific intended application of the advanced eombustor

technology development efforts of this program_ this technology is also

considered to be generally applicable to all advanced-englnes in the large

thrust size category.

PROGRAM PLAN

The NASA/General Electric Experimental Clean Combustor Program is

being conducted in three sequential, individually funded phases:

Phase I: Combustor Screening

Phase II: Combustor Refinement and Optimization

Phase III: Combustor-Englne Testing i

7
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phase I Prog_r_A_

The Phase I Program, wlllch has been completed, was an 18-month effort

specifically directed toward serocni_Ig and evaluating a largo number and

variety of co_sustor design approaches for obtaining low CO, lIC, NOx and
smoke emisslons levels. The o_Jective of these efforts was to identify,

define and develop promising combustor design approaches for obtaining

the objective pollutant exhaust emissions level redactions. This program

phase is the subject of this final report.

The key task elements of these Phase I Program efforts involved the
identification and definition of various advanced combustor design approaches

for obtaining the objective low pollutant emissions levels, the detailed

_ aeromeehanlcal design of several CF6-50 engine-slze versions of these approaehes_
: the fabrication of full annular versions of these various combustor designs

and the developmental evaluation of these full annular combustor test configu-
rations, All of these various full annular combustor test.conflguratlons were

designed and sized to fit within the existing eombustor housing of the pro-

duction CF6-50 engine and to operate with the same combustor inlet diffuser as

in the productlon.englne. The various low omissions eombustor test configu-
rations were evaluated in a high pressure combustor test rig, which exactly

duplicates the aerodynamic flowpath and envelope dimensions of the combustor

! housing of fl*eCF6-50 engine. These evaluations were conducted with combusto=

operating conditions identical to those of the CF6-50 engine, except for cam-
! buster pressure level at some high engine power test conditions. Lower pres-

sures were used at these high engine power test conditions because of air

supply facility limits. However, the measured emissions data were adjusted to
correct for the effects of the lower combustor pressure levels. In these

evaluations, detailed measurements of the emission characteristics of these
various eombustor test configurations were obtained with an on-line, rapid data

! acquisition exhaust gas sampling and analysis system. Along with these emissions
data, detailed data on the other important performance characteristics of each
combustor test configuration were also obtained.

In the basic Phase I Program, primary attention was directed toward the

development of low pollutant emissions combustor design technology for use in
advanced subsonic transport aircraft engines. In conjunction with this

major program effort, additional efforts were also carried out in two program
addondums, the Advanced Supersonic Transport (AST) Addendum and the Combustion
Noise Measurement Addendum. The purpose of the AST Addendum was to develop

combustor design technology for reducing the NOx omissions levels of AST

engines at supersonic cruise operating conditions by applying and extending
the results of the basic program investigations. The purpose of the Combus-
tion Noise Measurement Addend_mwas to obtain experimental data on the basic

acoustic characteristics of these advanced low emissions combustors and,

thereby, to enable comparisons of their noise characteristics with those of
current technology combustors.

Descriptions of the basic Phase I Program_ along with the results obtained

in these investigations, are presented in Chapter III of this report. Descrip-
tions of the efforts associated with the AST Addendum, together with the

V
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results of these invesLi}/aLions, are presented in Chapter IV of this report.
Tile results obtained in the Combustion Noise Measurement Addendum will be

presented in a separate report.

Phase il Pro_

Tile Phase II Program, which is currently underway, is a 15-month effort
to develop further the most promising advanced eombustor designs evolved in
the Phase I Program. The development efforts of this phase involve both full
annular and sector combustor component tests. Also included as a part of the
Phase II Program efforts is the detailed aeromechanical design of versions of
these advanced combustors for possible use in demonstrator CF6-50 engine tests.--

The prlma_y objective of these design and development efforts is to define and
provide at least one advanced combusto_ design which meets the performance and

installation requirements of the CF6-S0 engine and which also meets or closely

approaches the objective low pollutant emissions level goals of the program.

Phase llI Program

The Phase Ill Program, which is planned for the future, will consist of

detailed evaluations of the most promising Phase II Program combustnr design

in a demonstrator CF6-bq engine. The objective of these efforts will be to

demonstrate the successful attainment of significant pollutant emissions

level reductions with an advanced eombustor which meets the performance,

operational and installation requirements of the engine. The Phase Ill

Program is expected to be a 16-month effort.

PROGRAM SCHEDULE

The overall schedule plans of the NASA/General Electric Experlmenta]

Clean Combustor Program are presented in Figure i. In this chart, the solid

bars indicate completed efforts and the striped bar indicates efforts currently

under contract. The open bar, shown for the Phase IIl Program, indicates
possible future contract effort.

PROGRAM GOALS

Pollutant Emissions Level Goals

The pollutant emlssio_Ls level goals of the NASA/General Electric Experi-

mental Clean Combustor Program-Phase I are presented in Table I. As Is shown

by the comparison of the goals with the status levels of the current production
CF6-50 engine, the attainment of these goals involves significant pollutant

emissions level reductions. These goals are intended to be optimistic projec-

tions of the pollutant emissions level reductions that are praetlcall)"

attainable with combustor design technology .-dvancements. Thus, the prime

intent of the program was to generate and dev,:lop advanced combustor design

technology, rather than to refine and/or verify already available combustor

9
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Table I. Pollutant Emissions Level Goals of the NASA/C_neral

Electric Experimental Clean Combustor Program.

A. _sic Program Goals

s Sea Level Static Engine_eratlng Conditions

s Aviation-Kerosene Fuel

Engine Current

Pollutant Opsrating Program CF6-50 Engine
Emission Mode Goal Status i

t
NOx (As NO2) - g/kg Fuel Hot Day i0 44

Takeoff i

NOx (As NO2) - g/kg Fuel Standard Day - 35
Takeoff

CO - g/kg Fuel Standard Day 20 67
Ground Idle

HC (As CnHI.9n ) - g/kg Fuel Standard Day 4 27
Ground Idle

Smoke - (SAE SN) Hot Day 15 12
Takeoff

B. AST Addendum Goals

• AST Cruise Engine Operating Conditions

• Aviation Kerosene Fuel

Level of Current

Pollutant Program CF6-50 Combustor

Emission Goal (Approximate)

NOx (As NO2) - g/kg Fuel 5 17

C0 - g/kg Fuel 5 I

HC (As CnH1.9n) - g/kg Fuel 1 0.1

Smoke - (SAE SN) 15 5

Ii
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design technology. Further_ the use of water injection into the oombustor

to obtain lower NOx emissions levels was specifically excluded as an approach
to be considered in the Phase I Program.

As is shown in Table I, the emissions level goals of the basic Phase I

Program, which are intended to apply to advanced subsonic transport aircraft

engines llke the CF6-50 engine, are related to the specific steady-state

engine operating modes, where the peak levels of each emissions category are
generated. Each of-the gaseous emissions level goals is defined in terms of

an emission index, which is the ratio of the grams of pollutant emission formed

per kilogram of fuel consumed. The smoke emission level-goal is e_pressed to
terms of the SAE ARP I179 Smoke Number.

As is shown in Table I, the NOx emissions level goal of the basic Phase

I Program is defined at a hot day engine operating mode. The selection of

this operating mode, rather than a standard day takeoff operating mode, was

made to provide an extra degree of severity in terms of NOx emissions forma-

tion. At the hot day takeoff mode, the combustor inlet air ter_Jerature of

the CF_L-50 engine is 39° K higher than at the standard day takeoff mode (858° K
versus 819 ° K). Since inlet air temperature is the dominant parameter affect-

ing the degree of NOx emissions formatlonj the use of the higher combustor

inlet air temperature in the basic Phase I Program investigations thereby
provided NO x emissions level reduction technology applicable over a wide
range of simulated engine cycle pressure ratios. A combustor inlet air

temperature of about 860 ° K would be the nominal value expected at standard _

day takeoff conditions with a turbofan engine having _a cycle pressure ratio
of 35. -- -

Also included in-Table I are the pollutant emissions level goals of the

AST Addendum. These goals are defined at a specific set of combustor operating

conditions that would nominally be associated with an AST engine operating at
a specific high altltude-supersonlc cruise condition. The key goal of this set ........
of goals is the target NOx emissions level. The CO and HC emissions level

goals are intended primarily to set limits within which trade offs can be made ....

between attainable NOx emissions levels and attainable CO and HC emissions

levels. Because of the lower combustor pressure associated with the defined

AST cruise operating condition, this NOX goal is roughly comparable in terms

of attainment difficulty to the basic Phase I Program NO x emissions goal, which

is defined for subsonic transport engines at hot day takeoff operating
-" conditions ........

Combustor Performance Goals

The key combustor performance goals of the NASA/General Electric Experi-
mental Clean Combustor Program are presented in Table II. Except for its

combustion efficiency levels at low engine power operating modes, the current

production CF6-50 engine eombUstor already provides performance levels equal

to or better than those specified as goals for the basic Phase I Program.

Thus, the major challenge of this program was to identify and define advanced

12
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Table II. Combustor Performance Goals of the NASA/GOneral

Electric Experimental Clean Combustor Program.

Engine

Performance Operating Program
Parameter Mode Goal

A. Basic Progr_ Goals

Minimum CombustorEfficiency - % All 99.0

Maximum Pressure. Drop - % Cruise 6,0

Maximum Exit Temperature Pattern Takeoff and 0.25
Factor Cruise

Altitude Relight Windmilling Meet CF6-50

Engine Relight
Envelop_@.__

Mechanical Durability All Equivalent to
Current CF6-50

Combustor

B. AST Addendum Goals

Minimum Combustor-Efficiency - % AST Cruise 99.8

Maximum Pressure Drop - % AST Cruise 6.0

Maximum Exit Temperature Pattern AST Cruise 0.23
Facto_

13
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!
combustor designs which have perfor_ance characteristics similar to these of

the current CF6-50 engine combustor, ae well as reduced pollutant e_aelon8 ...............

levels. 1
The specified combustion efficiency goal at idle of 99 percent is higher

than the combustion efficiency provided by the current CP6-50 engine combustor

at idle operating conditions. This goal Is specified as 99.0 percent to be _I
consistent with the CO and HC

emissions level goals of the basic Phase I
Program. Combined, these latter two goals are equivalent to a combustion

efficiency at idle of 99.1 percent. !

I

Also included in Table II are the combustor performance goals of the AST _!

I Addendum. At the specified combustor operating conditions associated withthis addendmu irLvestlgation, the current production CF6-50 engine co_nstor _

also operates with performance levels equal to or better than these goals. ]

Thus, as in the basic program investigationsD the key development problem is
retaining these exeellen_ performance characteristics while also obtaining

more favorable pollutant emissions characteristics. The combustion efficiency
goal is specified as 99.8 percent to be consistent with the AST Addendum
goals for CO and HC emissions.

14
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CHAPTER If. PHASE ] PROGRAM - DESIGN AND DEVELOPMENT APPROACHES

The CF6-50 engine, for use in which the various Phase I Program com-

bustor test configurations were specifically sized and designed, is briefly

described in this chapter. Also described is the current production CF6-50

engine combustor which was used in this program as the baseline deslgnj to

which the performance and emissions characteristics of the various test

! configurations were compared. In addition_ the test facilities and equipment,

including the pollutant emissions sampling and analysis equipment_ are

described herein.- Further, the various testing methods and the test data

_i processing and analysis methods used in conducting this program are also
I described in this chapter.

CF6-50 COMBUSTOR DESIGN AND PERFORMANCE CHARACTERISTICS

CF6-50 Engine - General Description

The CF6-50 engine is the higher power version of two models of the CF6

high bypass turbofan engines which have been designed and developed by
General Electric.. The other model is the CF6-6D engine. The CF6-50 engine

is in co_nercial service as the power plant for the McDonnell-Douglas DC-10

Series 30 Tri-Jet long range intercontinental aircraft and the Airbus
Industrie A300B aircraft.

The CF6-50 engine is a dual-rotor, high bypass ratio turbofan incorporat-

ing a variable stator_ high pressure ratio eompressor_ an annular combustor,

an alr-cooled core engine turbine and a coaxial front fan with a low pressure

turbine. Basically, the engine consists of a fan section, compressor section,

combustor section, turbine section and accessory drive section. These basic

- sections are shown in Figure 2. This high bypass turbofan engine has a high

- thrust-to-welght ratio and favorable fuel economy characteristics. The key

overall specifications of the CF6-50 engine are presented in Table III.

i Table III. Key--Specifications of the CF6-50 Engine.
Weight 3780 kg
Length _cold) 482 cm

Max. Dis. (cold) 272 cm

Fan/Comp. Stages 1-(3)/14

HPT/LPT Stages 2/4

Thrust/Welght 5.95
Pressure Ratio 30: i

Airflow 660 kg/s
Max. SLS Thrust 218 kN

SFC O.389

Cruise Mach No./Alt 0.85/10.5 km
Thrust 48 kN

SFC 0.654

15
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The CF6-50 engine is considered to be an attractive selection for use in

this program as the basel_ne vehicle for developing and evaluating advanced i

combustor configurations with reduced levels of exhaust pollutant emissions.

The smoke emission levels of this engine are already very lowj virtually

invisible at all operating conditions. I

l

CF6-50 Combustor - General Description I

The CF6-50 engine combustor is a high performance design with demon- !

strafed low exit temperature pattern factors, low pressure loss, high combus_ !

tion efficiency and low smoke emission performance at all operating conditions .....

A cross-sectional drawing of this combustor, as installed in the engine, is 'I

presented in Figure 3. The key features of this combustor are its low pres_ i
sure loss step diffuser, its carbureting swirl cup dome design and its short I

burning length. The short burning length reduces the amount of liner cooling

aim required which, in turn, improves its exit temperature pattern and profile

factors. The step diffuser design provides very uniform, steady airflow
distributions into the combustor.

This combustor contains 30 vortex-inducing axial swirler cups, 1 for each.

fuel nozzle. The combustor consists of four major sections which are riveted
together into one unit and spot welded to prevent rivet loss: -the cowl i

assembly, the dome, and the inner and outer liner skirts. The combustor is

mounted at the cowl assembly by 30 equally-spaced radial mounting pins. A

photograph of this combustor assembly is shown in Figure 4. The inner and

outer skirts each consist of a series of circumferentially stacked rings which

are Joined by resistance welded and brazed Joints. The liners are film-cooled
by air which enters each ring through closely spaced circumferential holes.

Three axial planes of dilution holes on the outer skirt and five planes on the

inner skirt are employed to promote additional mixing and to lower the exit

temperatures at the turbine inlet. Several of the more important design _
parameters of this combustor are presented in Table IV.

Additional material relating to the design of this CF6-50 combustor, and
the fuel supply and control systems used with this combustor, are presented

in Appendix A of this report.

Some of the important measured performance characteristics of this !
combustor at sea level static takeoff operating condition_ are as follows: !

Exit Temperature Pattern Factor 0.26

Exit Temperature Profile Factor 1.09 i

Combustion Efficiency 99.9%

More detailed data on the pattern factor and profile factor perfo_aance and

requirements are shown in Figure 5. The altitude relight and ground start

characteristics of the combustor are presented in Figure 6.

17
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Table IV. CF6-50 Combustor Key Design Parameters.

_ Cumbustor Airflow (_C) 103.42 kg/s

Compressor Exlt Mach Number 0.27

Overall System Length 75.95 cm

Burning Length (LB) 34.8 cm

_ Dome Height (HD) 11.43 cm " "i

LB/H D 3.0

Reference Veloclty 25.9 m/s

Space Rate 2.2 x 1011 J/hr-m3-atm

APT/PT3 4.3_ (Total)

Number of Fuel Nozzles 30

Fuel Nozzle Spacing (B) 6.91 em

LB/B 5.0

B/HD 0.60

Design Flow Splits 33-32-35_ of WC
(Outer-Center-Inner)

Liner Cooling Flow 30Z of WC

2O
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Figure 5. Exit Temperature Profile Characteristics, Typical CFG-50
Production Combuster.
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a) Altitude Rellght Characteristics

b) Sea Level Ignition Characteristics

Figure 6. Altitude Rcllght and Ground Start Ignition Charactcrlstlcs,

Typlcal CF6-50 Production Combustor. i
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CF6-50 Combuetor - Exhaust Emissions Characteristics

The CF6-50 eombustor was originally designed and developed to meet low

smoke requirements. The basic design feature used to obtain the objective

Jew smoke levvls was the axial swirl cup combus_or dome design approach which
was orlginal]y developed for use in the CF6-6 and TF39 engines. This car-

buretlng swirl cup deslBn permits the introduction of large amounts of the

combustor.-airflow (up to 20 percent) through the swirl cups and provides very
effective fuel and airmlxing. These features result in low smoke levels

and, in addition, .a combustor design that meets the altitude rellght require-

ments of the engine. Low smoke levels have been demonstrated wi_h the exlst-

ing CF6-50 combustor design. The measured smoke levels obtained in an engine

test are presented in Figure 7.- With these low smoke levels, the CF6-50

engine exhaust plume is virtually invisible at all operating conditions.

The gaseous emissions characteristics of the CF6-50 engine combusto_

are illustrated in Figures 8, 9 and I0. In these figures, the results of.
emissions tests of CF6-50 Engine No. 455-508/6A at 7 SLS engine operating

conditions, ranging from ground idle to 100 percent SLS takeoff power are

presented. In this test series, Jet kerosene fuel was used. The test points

were chosen to correspond to the EPA power settings (ground idle, 30, 85, and.

100 percent rated power) with 2 additional points at low power (6 and 12"per-

cent) to better define the idle emissions levels. These points were obtained

with zero CDP bleed. An additional point was obtained with three percent

bleed, which was the maximum bleed obtainable with this particular engine

buildup without repiping the engine. The data are plotted against inlet

temperature (T3) in order to adjust the data to standard day operating condi-

tions. The measured NOx emission levels are-shown corrected to an--lnlet air
humidity level of 8.30 g/kg of air.

The key-emissions level data presented in Figures 8, 9 and iO are sum-

marized in Table V, where they are compared to the Phase I Program goals.

Table V. CF6-50 Engine/Combustor Gaseous
Pollutant Emissions Levels.

Emission Index, g/kK Fuel

Experimental
Current Clean Combustor

Engine Status Prosram Goal

HC - At Idle (Standard Day) 27 4

CO - At Idle (Standard Day) 67 20

NOx - At Takeoff (Standard Day) 35 -

NO x - At Takeoff (Hot Day) 44* I0

*Extrapolated value, based on standard T3 correction factor.
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Figure 8. HC Emission Characteristics, CF6-50 Engine/Combustor.
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TEST FACILITIES AND EQUIPMENT

Test Cell and Related Facilitles

The Phase I Program combuetor evaluations were performed in Test Cell
A3, which is located in the General Electric Evendale Plant. This facilltv

is fully equipped with the necessary inlet ducting, exhaust ducting, con..rols

and instrumentation required for conducting full-scale combustor component
tests over wide ranges of operating conditions. A view of the interior of

the call is shown in Figure ll. The cell itself is a rectangular chamber

with reinforced concrete blast walls on three sides and a lightweight roof.

The installed ventilation and safety equipment are designed specifically for
tests involving combustible fluids. This cell contains the necessary air
piping to acco_odate two test vehicles.

_ !

In operating this test cell, its utilization is maximized by mounting

the test r_gs on portable dollies with qulck-change connections so that

build-up operations are accomplished in another area and the resulting test
vehicle occupies the cell only for the duration of Its actual testing. This

cell operational concept allows the installation of a typical test vehicle

in about four hours. The turnaround time from the completion of a test with

one vehicle to the start of a test with another is, therefore, only about

eight hours. The instrumentation reliability is improved since the sensors
are prewired to multiple qulck-connect panels and checked out in the favorable

environment of the vehicle build-up area.

The control consoles and data recording equipment are located in the
adjacent control room. This room is insulated to muffle test noise and

facilitate eou_nunicatlon and is environmentally controlled for the benefit
eL-the electronic equipment.

Air is supplied to this test cell from a central air supply system.
This system has a nominal capacity of 45 kg/s of continuing airflow at a

delivery pressure of up to 20 arm. The system may also be used for exhaust

suction to simulate a pressure altitude up to 8.9 km,_wi_h flow ra_es_reduced

in proportion to density.

Auxiliary equipment in the air distribution network provides for further
conditioning of the delivered air, when requlred._Thls conditioning includes

lO-mlcron filtratlonD drying to a 233 ° K dewpolnt and temperature control.

Cold air, down to 217 ° K, can be provided by piping connections to a turbo-

refrigeration unlt. Warm air, up to 450 ° K,_can be supplied directly by

bypassing the aftercooler. Further heating, up to 922 ° K D is accomplished
with a gas-f/red heat exchanger. The _as-fired indirect air heater is

designed to accept 36 kg/s of air from the central air supply system at 450 ° K
and 9.5 arm and to discharge the air unvltlated at 933 ° K and 8.3 arm. The

heater is capable of accon_uodatlng higher flows and higher pressures at reduced
outlet temperatures. The heater is a refractory-llned shell 8.2 m in diameter
and 13.7 m tall, containing a conical radiating furnace baffle and a heat

exchanger.
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Figure 11. Interior View of Test Cell A3.
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Combustors being tested in this cell can be exhausted directly to the

atmosphere or can be connected to the facility exhaust system for pressure

control. When connected to the facility exhaust system, the combustor pres-
sure can be regulated_rom the upper l_ait, imposed by the pressure or flow

capacity of the air supply system D down to about 0.2 arm. Exhaust suction

i is provided either by the centrifugal compressors of the air supply system

or_.hy__atwo-stage steam ejector system with an interstage condenser.

Liquid fuels are supplied to Cell A3 from two large above-ground tanks,

each having a capacity of 114 cubic meters. Each. tank is provided _rlth a

centrifugal pump to transfer the fuels through lO.2-cm pipelines. The high

pressure fuel pumps, located in Cell A3, boost the fuel pressure as high as
826 newtons/cm2. .The available fuel pressures and flows with these pumps were

q adequate for all tests of the Phase I Program_ with ample margin for meter-
ing and control.

Rig

The Phase I Program combustor evaluations were conducted with an exist-

ing full annular combustor test rig. This full annular combustor test rig

exactly duplicates the aerodynamic combustor flowpath and envelope dimensions

of the CF6-50 engine. The test rig consists of an inle_plenum ehamber_ an

inlet diffuser section and a housing for the combustor. Included as a part

of this rig is an exit plane rotating rake assembly for obtaining measure-

ments of combustor outlet temperatures and pressures and for extracting gas

samples.

A drawing of this CF6-50 combustor test rig is presented in Figure 12.
Photographs of the test rig are preseL_ted in Figure 13. The combustor test

rig is basically a cylindrical pressure vessel designed for high-temperature

service and fitted with inlet and exlt flanges. The rig is equipped with

ports and bosses to accommodate fuel nozzles/Injectors, igniters and bore-

scope inspection devices. These ports are located exactly as in the engine

design. The rig is also equipped with provisions to extract both turbine

cooling air and customer bleed air. These Erovislons also duplicate those

in the engine. In this program, the engine design turbine cooling air bleed
flows were extracted from the inner and outer bleed ports shown in Figure 12.

The total bleed flow was metered with a sharp-edged orifice and the flow

rates were recorded. The bleed flow split was controlled by fixed area ratios

between the inner and outer bleed ports.

The air inlet connection of the test rig consists of an 81.3-cm diameter
pipe flange of special design which is bolted to the air supply plenu_ of the

test cell. In the supply plenum, the flow is mixed and then straightened by

grates and screens. Within the test rig, a bullet-nosed centerbody directs
the entering airflow-into an annular passage. This annular passage simulates

the compressor discharge passage of the engine. The inner and outer walls are

formed to the contour of the engine's diffuser and the gap is spanned by i0 ]
streamlined struts, identical to those in the engine, which support the center-

I

d

body. The struts also provide access for instrumentation leads into the J
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centerbody. Aft of the step diffuser, the centerbody forms the inner wall

of the combustor housing. The inner wall is provided with bleed ports,

through which a portion of the airflow can be extracted as customer bleed air.

Additional ports are provided to simulate turbine rotor cooling air extrac-

tion. The air extracted from both of these sets of ports is routed through

2 lO.2-cm pipes, forward through the eenterbodF nose, then radially out of
the rig.

The combustor test rig is equipped with SO fuel nozzle porte, spaced
12 degrees apart. The various fuel injection assemblies used-.{n this program

were all installed through these existing ports and, thus_ 30 fuel injection !
assemblies were used with all of the combustor test configurations, even I
though some of the configurations featured the use of more than 30 fuel inJee-

_ I tion points. Arrays of 30, 60, 72 and 90 fuel injection points were used in
the various test configurations. Fuelinjectlon assemblies with up to four

supply tubes were used to acco_odate the increased number of injection points.

The fuel was supplied to these injection assemblies through 4 manifolds

which had 45, 45, 60 and 90 fittings. A diagram showing the basic four-

manifolded fuel feed system is presented in Figure 14, along with a photo-

graph showing the four-manifold hookup on the test rig. The available hookups

were numerous. Alternate injectors, or sectors of injectors in each_of the

two combustor dome annuli, could be fueled. Each manifold fitting was equipped

with Leejets-(fixed orifices) which were used to provide reliable and uniform

circumferential fuel metering. There was a permanently attached filter incor_v-

porated into the LeeJet. The LeeJets calibrated within _3 percent of the

desired flow and were spot checked during the program. Two LesJet sizes

were selected to cover the full range Of required fuel flows. Operation of
the combustor at very low fuel flows was accomplished by the use of only the

small (9.8 kg/hr) LeeJet. For middle flow requirements, the larger LeeJet

(18.6 kg/hr) was employed and for the maximum flow requirements, both LeeJets

were utilised. A typical hookup, where either or both LeeJets could be used,
is shown in Figure 15.

The exhaust end of thls combustor test rig is provided with a large__

diameter flange to which an instrumentation spool section can be _oined. The

instrumentation spool section used in this program consisted of an existing

short-flanged pipe with a water-cooled eenterbody supported by radial pipes.

Water-cooled radial combustor .exit passage survey rakes were attached to an

axial shaft in the centerbody. In the array used in the program, five gas

sampling rakes and five thermocouple rakes were mounted to this rotating

shaft. Each thermocouple rake contained five thermecouple elements of

Platinum 30/Platlnum 6 Rhodium wire. A typical thermocouple rake, as used

in this program, is shown in Figure 16. Inside the thermoeouple rake body,

each thermocouple wire was spliced to a copper lead wire and led out of the

instrumentation section through the centerbody. The gas sampling rakes are

described in detail in the following section.

In this spool section, the shaft and its ten attached rakes are rotated

by a bevel gear set at the aft end, driven by an external drive motor through

a shaft inside a centerbody support pipe. Instrumentation lines are brought
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through otlmr support pipes. _lis instrumentation spool also contains water
spray rings to cool the combustion gases downstream of the measurement

piano. A photograph of the instrumentation spool section with the ten rakes

installed is presented in Figure 17. Local gas samples ware extracted and
total pressures were measured, using the five gas sampling rakes,

Follutan_ Emissions Samplin_ and Analysis System

The exhaust gas sampling and analysis system used in the Phase I Program

experimental investigations was designed to provide a rapid determinatlon of

the emlssion levels of the various combastor configurations at a wide variety

of test conditions. The sampling system consisted of a rotating rake traverse
assembly, multlelement gas sampling probes, heated transfer lines, a manl-

folding valve panel and the various gaseous and smoke emissions analyzers.

The outputs from the CO, CO2, HC and NOx analyzers_ere electronically inte-
grated with the test cell digital data acquisition eystem_ which allowed

all emissions data to be automatically recorded and reduced in the test cell
in a matter of minutes.

One of the key components of this system was the rake traversing assembly.

This traverse assembly_ shown in Figure 17j contained 5 thermocouples and

5"gas sample rakes and was capable of rotating 72 degrees. Thus, gas samples

could be extracted from any desired location within the combustor exhaust
plane. The normal test procedure used in the Phase I Program investigations

was to extract gas samples (and exit thermoeouple data) at six-degree intervals

in the exit plane. In this manner, 12 rake traverse positions were required

to sample the entire combustor exhaust stream annulus.

The gas sample rakes used in this prg_ram contained five elements, or

probes, with quick-quenching probe tips. In this design, both water cooling

of .the probe body and steam heating of the sample lines within the probe are

used. A photograph of one of these rakes is shown in Figure 18. The assembly

is shown schematically in Figure 19. Each of the five individual sampling

elements was led out of the rake separately; there was no co_mon manifolding

of these sample lines within the sampling rake. The tips of each of these

sampling elements were designed to quench the chemlcal reactions of the

extracted gas sample as soon as the sample entered the rake. This quenching,

or freezlng_ of the reactions was necessary to eliminate the possibility of

further reactions within the sample lines. Water cooling of the rake body

was required to maintain the mechanical integrity of the rakes in the high

temperature, high pressure environment in which they operated. Steam heating
of the sample lines within the rake, on the other hand, was needed to maintain

these sample lines at a temperature hlgh enough to prevent condensation of

hydrocarbon compounds and water vapor within the sample lines.

With 5 sampling rakes wlth 5 elements each, a total of 25 gas sampling

locations existed within the combustor exit plane at each angular position

of the traverse assembly. Of the 25 available probe elements, however,

3_

\

00000001-TSE01



(

00000001-TSE02



40

s,'

00000001-TSE03



InteJ [late Structure

Leading Edge of Probe

or Rake Body

Stainless Steel

Sample Tube

CoIlper Tip

Cooling Steam

Water Heating
290 - 310 ° K _450 ° K

Figure 19. Steam-Heated, Watcr-Cooled Gas Sample Rake,
Schematic.
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7
only 15 ware normally used for gaseous m,isaions sampling, with the remaining I0

elements used for combustor exlt pressure measurements and smoke emission

sampling, A selector valve in each of these latter ten sample lines allowed

either smoke level or exit pressure data to be obtained at any selected
angular position. The individual rake elements normally used for the various

types of measurements are shown in Figure 20.

After leaving the rakes, the individual gas sample lines were led to a

series of selector valves and then to the emissions analyzers. These llnes

were grouped into bundles of 5 lines (1 bundle for each gas sample rake,_and

each bundle was steam-traced from .the individual rakes to the analyzers

in order to maintain the sample llne temperatures near 422 ° K. Each
sample llne was constructed of.0.64-em diameter, 0.089-cm wall stainless steel-

tubing. Two tharmocouples were installed in each tube bundle to monitor the

temperature of the steam used for heating the sample lines. In addition, one
sample llne from each bundle was instrumented to provide a measurement of the

pressure within the sample llne. This pressure measurement provided assurance

that sufficient flow was being drawn throuBh the sample lines to quench the reac-

tions at the probe tips.

In the test cell control room. the 25 individual _ample lines were con-

nected to a group of 3-way selector valves. At this panel_ the selected

sample streams for providing smoke level or pressure data were separated, by
the valvlng arrangement, from those selected for gaseous.emlssions level

determinations. By manlpulatlon of the appropriate valvesp any individual
elezent or any desired combination of elements could be selected for the

various types of measurements. The normal procedure used was to manifold

the 15 selected streams shown in.Figure 20 for gaseous emissions level

determinations together at this control valve panel, thereby supplying one
average gas sample to the emissions analyzers at. each traverse position. This

manifolding procedure was a very fast method of determining the average level
of _ach. of the various emissions of interest at each circumferential traverse

position and alleviated the need to analyze each sample individually st every

trau_rse position of a given test condition.

An existing on=line exhaust gas analysis system was used for determining

the C02,. COj HC D NO and NO 2 concentrations of the exhaust gas sample streams.
With this on-llne system_ the sample streams were continuously processed. A

flow diagram of this system is shown in Figure 21.

The four basic gas analysis instruments of this on-line system are a

flame ionization detector for HC emlsslonsD two nondlspersive infrared

analyzers for CO and CO2 emissions and a heated chemiluminescence analyzer

for NO and NO2 emissions. This analysis equipment is in general conformance

with SAEARP 1256 (Reference l)j except _or the use of a chemilumlnescence

analyze_ for NOx emissions_ The output signals of these analyzers were
recorded both on a printed paper tape and into the digital data acquisition

system of the test cell. With this latter data processing system, the

output signals of the analysers were continuously sea,ned and fed into an

on-line computer.
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_e smoke emissions data were obtained in this program using the standard
General Electric filter stain method. The equipment used for these measur_-

merits is In conformance with SAE ARP 1179 (Reference 2).

More detailed information on the entire gaseous and smoke emissions

sampling and analysis system is presented in Appendix B of this report.

Data Processin 8 Systems

The data processing equipment-permanently installed in Test Cell A3

includes a 900-channel digital data acquisition system, strip-chart recorders

for contimlous recording of up to 24 test parameters, displays of 22 pressures,

displays of 24 temperatures and displays of 4 fuel flows for Use by the operators

in controlling test parameters, plus a small analog computer_generally programmed

to compute airflows and fuel-air ratios. Portable equipment includes a tele-

type terminal for the time-sharing computers. The valves used to regulate
fuel flows, airflows, combnstor air temperatures and combustor air pressures

are remotely operated from the control room by means of pneumatic operators.

Various elements of this control and data processing equipment were used in

the tests of the Phase I Program.

Throughout the program_ the combustor test data were recorded by the

test cell digital data acquisition system. This apparatus scans each of the

measured parameters in sequence, controlling the position of pressure scanning

valves when required, converts the amplified DC _±gnal of the measurement to

digital form and records the value on a perforated paper tape suitable for

input to the time-sharing computer through the teletype terminal. During each
scan, the overall voltage accuracy is checked against a precision potentiometer

that has been calibrated in a standards laborato=y. R%e digital voltmeter

and low level amplifier are of sufficient quality that voltages are accurate

to 0.02 percent of full-scale in the 0-I0 millivolt range.

All connections between data sensors and readout instrumentation, and

all progra_c_ing of the sequencing and control circuitry, were accomplished

through interchangeable program boards. Thus, each test setup included its

own prewired, preprogrammed front panel for rapid changeover from one circuit

configuration to the next. A schematic of the data acquisition installation

setup is shown in Figure 22.

As is mentioned above, the CO2, CO, MC, NO and NO2 analyzers of the
gaseousemisslons analysis system were also electronically integrated into

this test cell digital data acquisition system. These emissions d_ta from

these analysers were, therefore, transmitted to an on-line computer, as well

as recorded on a printed paper tape.
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TEST AND DATA ANALYSIS PROCFDURES

The procedures employed in these Phase I Program investigations were
designed for rapid screening of the various candidate combustor configurations.
Each combustor configuration-was tested over a range of simulated engine

operating and parametric test conditions. The gas sampling system developed
for these tests incorporated the latest in gas sample extraction and auto-

mated data processing systems technology and was based on the experience
gained in numerous combustor component test programs conducted at General

Electric. Detailed surveys were made of the eombustor exit plane at all test

conditions to accurately determine the emissions and performance character-

istics of the _xperimental combustor configurations. These test procedures,
along with the analytical procedures used to reduce and adjust the test data

to standar-d-CF6-50 engine operating conditions, are described in the following
sections.

Test Conditions

The test conditions selected for the various combustor evaluations of

these investigations represented actual engine operating conditions,
simulated engine operating conditions and parametric variations about these

operating conditions. The points which were most important during these

tests were the CF6-50 engine standard day idle condition and the hot day
takeoff condition, since the program goals for emissions and performance

were specified at these cycle points. Other points of particular interest

during testing were the CF6-50 hot day 30 percent power, hot day 85 percent

power and standard day cruise conditions. In addition, selected configura-
tions were tested at a typical AST supersonic cruise condition.

In these tests, the combustor inlet temperatures_ reference velocities

and turbine cooling air extraction rates of the CF6-50 engine were exactly
duplicated. Combustor inlet pressure levels were also duplicated at the idle

condition, but reduced pressure levels (relative to those of the engine)
consistent with the-air supply capacity were used at the higher power condi-

tions. In these cases, the airflow rates were correspondingly reduced to

maintain the true reference velocities. At the hot day takeoff condition,
the air supply limit in these tests was 9.5 arm, compared to the engine
pressure of 29.1 arm.

Turbine cooling airflow extraction rates, as in the CF6-50 engine, were

duplicated in these tests. The extraction rates were 6 and i0 percent of the

compressor discharge airflow from the outer and inner combustor flow passages,
respectively.

i Selected combustor configurations were tested over ranges of test condi-tions around the nominal idle and takeoff operating conditions. The
following ranges of test conditions were investigated:
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Idl____£e

Inlet temperature: 366 - 589" K

Inlet pressurez 2.72 - 4.76 arm

Reference velocity: 14.6 - 21.3 m/s*

Takeof[

Inlet temperature: 644 -866 ° K

Inlet pressure: 3.06 - 9.53 arm

Reference velocity: 18.9 - 29.6 m/s*

*Maximum attainable reference velocity

The-purpose of these parametric tests was to better define the effects of-

comhustor operating conditions on the pollutant emissions characteristics of

the combustors. In addition, at all test conditions, data were obtained

over ranges of eombustor fuel-air ratios. At some fuel-elf ratio3, the effect

o£ varying the fuel flow splits between combustor annuli or stages was also
examined,

A matrix of the important test conditions is shown in Table Vl. From

this list of test conditions, a test point schedule was established for each
combustor test configuration. In this manner_ each test was tailored to the

specific combustor under investigation _n order to obtain the maximum
benefit from the test, Very infrequently, test conditions not contained in

Table Vl were run if, during the course of a test, the need for an alternate
point was apparent.

Test Procedures

In the elevated pressure tests, the test points were usually run in
order of increasing combustor inlet temperature for safety considerations and

to expedite testing. As test co.,ditlons were changed, the combustor pressure

drop and the various combustor metal temperatures were monitored on multi-
channel strip chart recorders to ensure that the established transient safety
limits were not exceeded. When each test condition was set and stabilized,

the data were recorded in two phases. First, the fixed eombastor instrumen-

tation (inlet air pressure and temperature, airflow, fuel flow, metal

temperatures_ exit pressure_ etc.) was recorded. Then a survey of the

numerous positions in the combustor exit plane was made_ collectln 8 detailed

exit temperature and pollutant emissions data. I%e scope of the test

instrumentation read on each test point is shown in Table Vll.
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Table VII, Combustor/Rig Instrumentation.

Parameter Ins trumont arian

Total Airflow Standard ASMEbrifiee

Bleed Airflow Standard ASM_ Orifice

Fu, l Flow Turbine Flow Meters

Fuo_ Injector Pressure Drop Pressure Tap In Each Fuel Manifold

Fuel Temperature Thermoeouple in Fuel Manifold

Diffuser Inlet Total Pressure 4 5-Element Fixed Impact Rakes

Diffuser Inlet Static Pressure 4 Wall Static Taps

Diffuser Inlet Total Temperature 2 Thermocouples on Each PT Rake

Combustor Exit Total Temperature 5 5-Element. Thermocouple Traverse
Rakes

Combustor Exit Emissions Levels 5 5-Element Impact Traverse Rakes

Combustor Exit Total Pressure 2 Elements on Each Emissions Rake

Combustor Metal Temperature ..........................Minimum of 12 Thermocouples on Dome

and Liners Plus Temperature Sensi-
tive Paints

Inlet Air Humidity Level Dew Point Hygrometer

Combustor Passage Static Pressure 3 Wall Taps in Each Passage (6 Total)

Combustor Dome Pressure Drop 4 Pressure Taps

{ Gas Sample Line Pressure Pressure Tap in One Gas Sample Line
i from Each Rake at Rig/Cell Interface

(5 Total)
| Gas Sample Line Temperature 2 Thermocouples in Each Steam-Heated

Tube Bundle, One at Rake/Tube Bundle
Interface, One at Rig/Cell Interface

(i0 Total)
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_le normal test procedure was to obtain exit thermocouple and emissions
data at six-degree intervals around the eombustor exit annulus. With the .........

rake traversing assen_ly _qed in this program, 12 traverse l)ositions were
required to sample the entire exhaust plane. On those tests where acoustic

measurements were taken, this procedure was altered somewhat. With the down-

stream acoustic probe installed in the cembustor exit plane, the travel of
the rotating rake assembly was limited to 30 degrees. Therefore, en these

tests, data were taken in it=co-degree increments around the exit annulus,
at i0 rake positions.

In addition to these elevated pressure tests, the ground start ignition
characteristics ef three eombuster test configurations were also evaluated.

The ignition tests were originally planned to be conducted in two parts.
Initially, the sea level ignition capabilities were to be investigated over
a range of airflows. Then, with promising configurations, the altitude

relight characteristics were to be determined _ver a range of windmilling
conditions associated with the CF6-50 al_tude flight map. Howeverj of the

three configurations ev_ntually selected for sea level ignition testing,

none was deemed sufficiently promising at this stage of their development to
warrant the altitude relighT._investigations.

To determine the sea level ignltion characteristics of the selected

designs, the combustor test vehicle w_s exhausted to the atmosphere, thus

allowing visual observation of the ignition attempts. A prescribed combustor

airflow, within the range of starting airflows of the CF6-50 engine, was set

with ambient temperature inlet air. The fuel flow was slowly increased and

ignition attempted. The fuel flow was recorded where one cup was llt, where

50 percent propagation occurred and where i00 percent propagation occurred.

The fuel flow was then decreased and the condition where one cup was out,
where 50 percent of the cups were out and where lean blowout occurred was

recorded. |_hile maintaining the same inlet conditions, this process was

repeated several times with both the hydrogen torch and the electrical spark

ignitor. When sufficient data repeatability was achieved, a second, third,
and sometimes fourth eombustor airflow was set, and the entire procedure was
repeated at each new condition. This test procedure is identical to that

employed during the ground start testing currently conducted on the current
production CF6-50 engine combustor.

Pollutant Emissions Measurement Procedures

As is described in the preceding section, 15 individual elements (3
elements per rake) were usually used for the gaseous emissions level measure-

ments. Because of the extensive amount of time that would have been required

to individually analyze samples obtained from each of these elements at every
traverse position of every eombustor test point, some type of sample mani-

folding was always employed. Previous eombustor eompone _t test programs at

C_neral Electric have shown that, when done properly, the sample manifolding
concept provides emissions levels that are in close agreement with those

determined from measurements of many individual samples.
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Because of tile wide variations in fuel staging techniques which woru

investigated as a part of this program, various exhaust gas sample manifolding

techniques wore employed. The normal procedure was to nmnifold together only

gas eamples which had nearly equal sample emissions concentrations, in order

to provide properly weighted results. During normal fueling points (combustor
fueled .uniformly) all the various gas samples-could be manifolded together.

On points where only one annulus or stage was fueled, only samples from the
same radial i_aersion were combined, due to the large radial emissions con-

centration gradients which _ould exist. On points where only a-sector of the

combustor was fueled, only samples taken from the same circumferential

position were manifolded together because eL the strong circumferential
variations.

GO, C02, HC and total NOx emissions levels were determined in all
instances. At some special test conditions, NO and N02 emissions levels were

d also separately determined. Additional details on these gaseous emissions

sampling procedures are presented in Appendix B of this report.

During some of these combustor tests, smoke emissions levels were also
measured at selected test points of interest. These levels were generally not

measured in tests where the maximum combustor inlet pressure level was less

than seven arm since the smoke levels at such low pressure levels would he too

low to be accurately determined. The smoke levels of the CF6-50 production
combustor are already very low and the smoke levels of the various Phase I

Program combustor configurations were expected to be even lower. Thus, smoke
emissions characteristics were generally not considered to be of major conoern.

At thos_ conditions where smoke data were acquired, samples were usually ex-
tracted from the eombustor exit plane with ten elements, as shown in Figure

20. These ten elements were manifolded together to proviue one average sample
to the smoke measurement console. At least three smoke spots were taken at

each test condition and the average SAE Smoke Number for this operating point

was determined from the average of these three spots.

The normal General Electric procedure for measuring smoke levels is to

extract several 0.005_ cubic meter samples, but due to the-low smoke levels of

most of the combustor configurations of this program, larger samples of

0.0198 cubic meter were used. With this size sample, more accurate reflec-

tance measurements of the smoke spots could be obtained because-the spots
were darker.

Combustor Performance Data Processin 8 Procedures

A summary of the important combustor operating performance parameters
which were measured or calculated is shown in Table VIII. Most of the param-

eters and equations of this table are self-explanatory, hut a few items

require further clarification:

• By General Electric convention, reference velocity is baaed on

total inlet airflow, total inlet density and casing cross-sectlonal
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area at the dome exit. _or the CF6-50 flowpath, this reference area
is 3729 em2,

• Each eombustor exig temperature was computed from the metered

fuel-air ratio and averaged gas sample combustion efficiency

(with measured inlet temperature and standard thermodynamic

charts). _lermocouple data, when available, were used to compute

exit temperature profile factors and pattern factors. No radiation _

or convection corrections were applied to these thermocouple data.

Correction factors could now be deduced from th_ sample data.

Emissions Data Processing Procedures

_i The voltage responses of the CO, CO2, HC and NO x analyzers were read at
each traverse position of a given test condition with the test cell digital

data acquisition.system, as described previously, These data were _transmitted

directly to an on-llne data reduction computer for calculation of the emis-

sions concentrations, the emlssfon indices, the combustion efficiency and the

fuel-air ratio of the gas sample at each traverse position.. A new emissions

data processing and reduction program was specifically developed for this

purpose as a part of the Phase I Program. With these capabilities, a normal

12-posltlon manifolded traverse could be connected in about 15 minutes and

reduced gaseous emission• data were available wfthln another 10 to 15 minutes.

The equations used for these ealculatlons were basically those contained

in SAE ARP 1256 (Reference i). In these calculations, the CO and CO 2 concen-

trations were =orrected for the removal ol water from the sample before its

analysis. Aviation kerosene (JP-5 fuel) was used throughout these tests.

Tnereforej a typical value for n (fuel hydrogen-to-carbon atom ratio) of 1.92

was used in these calculations. Frequent fuel analyses, obtained throughout

the test series, confirmed this value.

Based on the individual gas sample emission index, fuel-air ratio and

combustion efficiency values at each traverse location, the overall average

emission indlees_ sample fuel-air ratio_ and combustion efficiency for the

test condition were then determined by mass averaging, The•e averaged values

are the values presented in the numerous data tables and figures throu_1out

this report.

Pollutant .Emissions Data Adjustment Procedures

Correlations relating pollutant emission_ levels to comb'*stor operating

conditions were used in this program to:

• Extrapolate dat_ _rom the reduced pressure test condition_ to the

full engine opezatlng pressure.
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s Extrapolate test data to combustor inlet air temperatures, which

could not be obtained during a test due to combustor safety
limitations.

s Normalize a range of test data to a single standard test condition.

In studies conducted at General Electric and elsewhere, N0x levels have
been found (empirically) to increase: (i) exponentially with increases in

combustor inlet temperature; (2) exponentially with decreases in inlet air
humidity; (3) linearly with increases in combustor residence time; and,

(4) directly with the square root of combustor inlet pressure. In the General

Electric studies, the following functional re)ationships have been found to

_I best describe the NOx formation processes:

NOx = exp (TT3/169) (TT3 in =K)

e exR (-0.0188H) (H in g water/ks air)

1

ires (or _R for a fixed combustor length)

(PT3)0'5

These empirical correlations have been found to be in excellent agreement with

the relationships predicted by a complex, analytical NOx emissions computer
model developed at General Electric.

It has also been found experimentally that NO x levels, at a given set
of inlet conditions, are highly dependent upon combustor fuel-alr ratio an_

eombustor design. The NOx emissions characteristics of rich primary zone
combustor.deslgns, such as the production CF6-50 engine combustor, have been

found to decrease with increases in fuel-alr ratio. However, the NOx levels
of lean primary zone designs, such as those tested in this program, have been--

found to increase with fuel-air ratio. The slope of this increase is highly
dependent upon specific combustor design features. Thus, no generalized

fue-l=air--ratlocorrelation factors have been developed.

Using the pressure, temperature, reference velocity and humidity

relationships shown above, NOx emissions data acquired at any test condition
can be extrapolated to any other _est condition of interest (at the same

fuel-air ratio). In this program, the conditions of most importance from a

NOx emissions standpoint were the hot day takeoff and AST cruise operating

eonditlons. -The combustor inlet conditions for these cycle points ere:
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VR "*arm m/_s._

llot Day SLSTO "29.06 85"--8 26.5 6.29

AST Cruise 6.80 833 26.5 6,29

_General Electric's procedure is to adjust NO x data to a humidity level of
6.29 g/kg (corresponding to 60 percent relative humidity o11 a standard day).

The above relationships were used in this program to extrapolate the measured
data to these test conditions. The general procedure used in this program

was to extrapolate all NO x emissions data to the hot day takeoff condition,

plot it versus fuel-elf ratio and then determine-the true takeoff_level at

the correct fuel-elf ratio (0.0245).

The effects of combustor operating conditions on CO and HC emissions

levels are not as predictable as those for NO x. Both CO and HC levels are
known to decrease with increasing inlet temperature and pressure and to

increase with increasing reference velocity. In previous studies conducted

at General Electric, the CO and HC levels have been found to correlate well

with an-exponential function of inlet temperature, a powe _ function of inlet

pressure and a linear function of reference velocity. However_ the exact

functional relationships describing these changes have been found to be

highly dependent upon the combustor configuration being evaluated. Some

combustor configurations have been found to be very sensitive to changes in

inlet condltions_ while other configurations were much less sensitive.

In the Phase I Program_ the engine operating conditions of most interest

from a CO and HC emissions standpoint were the standard day idle conditions.

This operating condition was exactly duplicated in the tests. Thus, no

extrapolation of these data was required. At most of the simulated high

power operating conditions of interest, the various test configurations

operated with very high combustion efficiencles and correspondingly low CO

and HC levels. Extrapolation to true engine conditions would have resulted

in even lower CO and HC levels. Some tests of the Radial/Axial Staged

Combustor, however, produced higher quanti=ies of CO and HC at the simulated

high power operating conditions. Because of the significant levels of these

emissions_ in some casesj at these conditions an empirical method of extra-

polating the data to the actual engine pressure levels was developed.
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CHAPTER III. BASIC PIIASE I PROGRAM

INTRODUCTION

_le objective of the basic Phase I Program was to identify, define and

develop promising combustor design approaches with significantly lower CO,

IIC,NO x and smoke emissions levels than those of current technology combustors
for use in advanced CTOL commercial transport aircraft engines. Thus, the

efforts of this program were involved with the screening and evaluation of a

large number and variety of combustor design concepts. These efforts weze

specifically directed toward defining advanced eombustors for use in the
General Electric CF6-50 engine, although the resulting combustor design

technology was intended to be generally applicable to all advanced engines in -

_ the large thrust size category.

The pollutant emissions objectives of these efforts were each defined at J

specific CF6-50 engine operating modes. The target levels are shown in - i
Table I, where they are compared to the emissions levels of the current _

production CF6-50 engine at the same operating modes. As is shown by this

comparison, major reductions in the levels of the three gaseous pollutant--
emissions are needed to meet these target values. The key combustor per-

ferments objectives of these efforts were, essentially, to maintain the same

hlf_ performance levels in the low emissions combustors as are obtained with
the current production CF6-50 combustor.

The key task elements of the_baslc Phase I Program involved the definition
of advanced combustor design approaches, the aeromechanlcal design of CF6-50

englne-slze versions of these approaches, the fabrication of full annular
versions of these deqigns and the development testing of these full annular

combustor configurations. The combustor configurations were all designed to

fit within the combustor housing of the current production CF6-50 engines and

were evaluated, at elevated pressures, in a test rig which exactly dupllcates--

the combustor housing of the engine.

The basic Phase I Program effort was comprised of two program elements,

which were carried out in parallel. Program Element I involved the design,
fabrication and test of CF6-50 englne-slze eombustor8 with various NASA

Swirl-Can-Modular dome configurations. A schematic illustration of this

family of combustor test configurations is presented in Figure 23. Versions of

this type of eombustor design with arrays of 60, 72 and 90 swirl cans, with
various types of swirl-can flameholder devices, with various fuel injection

devices and with various types of fuel injection staging were evaluated. In

total, 17 comhustor configurations were tested as a part of Program Element I.

Program Element II involved the design, fabrication and test of CF6-50

englne-slze eombustors with other types of advanced dome configurations. The
three basic families of conflguratlons whlch were evaluated in this program

element were the Lean Dome Single Annular Combustor_ the Lean Dome Double
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Figure 23, Swlrl-Can-Modular Combustor for CF6-50 Engine.
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Annular Combustor and the Radial/Axial Staged Combustor. Schematic illus-

trations of these CF6-50 combuetor design approaches are presented, reapec-

tlvely, in Figures 24, 25 and 26. Versions of each of these combustor types

with various combustor airflow splits and with various other configuration
modifications were evaluate_. In total, 17 combustor cenflguratlons were

tested as a part of Program Element II.

An extensive quantity of testing was completed in this basic Phase I

Program. In each program element, 17 combustor test configurations were
evaluated. Combined, data were obtained at a total of 733 individual test-

points in 43 individual test runs. The. tetal test data acquisition time
involved in obtaining these data was over 220 hours.

In the following sections of this chapter,_ descriptions of the variousi
combustor test configurations, descriptions of the measured pollutant and --

performance characteristics of these combustors and assessments of the

results ef these design and development efforts arepresented.

COMBUSTOR TEST CONFIGURATIONS

Program Element I Combustor Test Configurations

The Program Element I combustor configurations consisted of various ver-

sions of Swlrl-Can-Modular Combustors, all sized for use in the CF6-50 engine.

The Swirl-Can-Modular Combustor design concept was developed at the NASA-

Lewis Research Center for application in advanced turbojet engines..This

combuster design concept consists of a modular array of carbureting swirl cans,

each with an axial air swirler and a flame-stabillzing plate. Each module

contains features te premix the fuel_with air in the carburetor, swirl the

fuel-alr mlxture_ stabilize combustion in the swirl-can wake and provide

Interfaclal mixing areas between--the bypass air through the swlrl-can array

and the hot gases in the wake of the swlrl-can modules. In such Swirl-Can-

Modular Combustor designs, a.large number of swirl cans_arrangad in ueveral

annuli within the dome, are utilized.

The various Program Element I deslgn8 were intended to build upon the

NASA Swirl-Can-Medular Combustor experience and to identify design features

capable of providing further reduced COp HC and NO x emissions levels for this
combustor design approach. They were, however, constrained to fit into the

current CF6-50 engine flowpath envelope and to use the production CF6-50

combustor cooling liners. The Program Element I Swirl-Can-Modular Cembustors

were, thusp designed for a significantly different engine application and

engine cycle than those of the previously conducted NASA investigations.

Therefore, some differences in design were necessary. A comparison of several

key design features of the CF6-50 size designs with those of typical NASA designs
is shown in Table IX.

The most significant differences in the two sets of designs are in the

number of dome annull, the size of the swirl cans and the module air leading.
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Figure 25. Lean Dome Double Annutar Combustor for CF6-50 Engine.

62

,P

00000001-TSF11



Figure 26. Radial/Axial Staged Combtlstor for CF6-50 Engine.
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The use of a two-row dome design in the CF6-50 combustor configuration (rather ........
then three or four rows, as in tileearlier NASA designs) was dictated by the

geometric constraints of the CF6-50 engine flowpa,_h and tlle diameters of the

combustor cooling liners, To obtain an approximately square array of fuel
sources, an array in _lich each swirl-can flameholder is approximately square

in shapu, tilebasellna CF6-50 Swlrl-Can-Modular Combustor design incorporated

72 swirl cans, 36 in each row. _is provided a radial.spacing of 5.87 cm,

and a circumferential spacing of 5.38 cm on the inner annulus and 6.40 cm on
the outer annulus. The use of fewer fuel injection sources than those used

in this baseline design was expected to improve the Idle emissions (CO and He)

levels of this baseline eombustor, while the use of more injectors was

expected to reduce the NOx emissions. Consequently, a 60-swlrl-can configura-

tion and a 90-swirl-can configuration were also defined. With the 60-swirl-can ................_
dome array, the dome frontal area per swlrl can was approximately equal to
that of the combustor designs used in earlier NASA investigations. The 72 and

90-swlrl-ean dome arrays, therefore, provided slightly less frontal area per

swirl can, and req_ir_ed smaller flameholders./.han the earlier NASA design, I
!

The size of the swirl can (3.18-cm diameter) used in the CF6-50 combustor i
design was chosen so as to be co_m_on to all three combustor designs (60, 72,

90 cans). The limiting case was the 90-swirl-can combustor where the

swirl-can spacing was only 4.31 cm in the inner annulus. This factor-precluded

the use of a larger sized can,. as was used in the earlier NASA investigations, '_
since there would have been insufflcJent circumferential space for the flame-

holder. In addition, some of the 72-swirl-can eomhustor configurations were

designed to acconlnodate e co_mterrotating air swlrler around the swirl cans

and the 3.18-cm diameter swirl can was the largest that could be used with

this counterrotating air swirleL'. In addition to being a smaller diameter, i

the Program Element 1 swirl cans were also longer than those used in the NASA

design to provide further prQtection against fuel escapement upstream of the
swirl cans.

The various Program Element I swirl-can combustor designs, were intended

to permit investigations of the effects of the various design parameters on

the pollutant emissions and performance characteristics of this combustor

concept, Design parameters such as number.of swirl cans, flameholder geometry,

fuel injection technique, swirl-can airflow and combustor pressure loss were

extensively evaluated in these tests. Since the combustors were of modular

construction, most of the hardware was interchangeable among the various
designs. A description of the combustor hardware comon to all swirl-can tom-

buster configurations tested in this program is presented in the following
section,

Common Design Features - The baseline combustor configuration design con-
tained 72 swirl cans and featured flat flame-stabilizlng plates, axial air

swirlers and low pressure fuel injection devices. Modified CF6-50 production

combustor cooling liners and newly designed inner and outer cowls completed

the combustor assembly. A schematic illustration of this baseline Swirl-

Can-Modular Combustor, with the key dimensions indicated, is shown in Figure
27. A photograph of this combustor is presented in Figure 28. Some of its

important geometric parameters are listed in Table X.
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Table X. Swlrl-Can Combustors, Geometric Design Parameters.

Inner Outer Overall

Annulus .........Annulus

Dome Height (1) , cm 5,715 5.715 11.43

Burning Length, cm - - 26.67

Fuel Injector Spacing, cm

60 can 6.46 7.69 -

3
72 can 5.38 6.41 -

90 can 4.31 5.13 -

2
Area, cm - - 2426

3
Volume, cm - - 47,183

(i) At plane of flameholders
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The basic dome support structure used in all Program Element I combustors

consisted of networks of sheet, metal "spectacles" welded to an inner and an

outer ring. _e swlrl-ean assemblies were tack-welded into these dome

mounting brackets, and the resulting dome assemblies were bolted to the inner
and outer cowls. To determine the effects of varying the number of swirl

cans on emissions and performance levels, three dome mounting brackets were

designed to accommodate 60, 72, or 90 swirl cans.

The modular swlrl-can assembly (shown in Figure 29), which was common to

all Program Element I configurations, consisted of a cast cylindrical can and
a sheet metal swirler and flameholder. These components were tack-welded 4

together to allow-for easy removal of any of the pieces. !

Three different types of flameholders were designed.. These designs are i

shown in Figure 30....The flat flameholders were designed in 3 sizes to permit 1

their use in the 60, 72 and 90-swirl-can dome arrays. These flameholders were i
all designed with equal amounts of air on all sides of the flameholders. The !

flameholder extended over the exit of the swirl can (see Figure 27) and served
as a fuel trip ring to help provide a more unlform fuel distribution. A

variation of the flat flameholder design, with a multitude of radial slots
cut into each flameholder to increase the flamehelder wetted perimeter, was

also designed for the 60-swirl-can dome array as part of the AST Addendum

evaluations. This latter configuration, which is shown in a partially

assembled dome array in Figure 31, was subsequently evaluated at both CF6-50

engine and AS_ engine operating conditions. The countorswlrl flameholders

'were designed only for the 72-swirl-can dome array because the counterswlrler
resulted in flameh01ders too large for use in the 90-swirl-can dome. The

sheltered flameholders were designed only for the 90-swirl-can dome array.
All of these flameholders were intended to provide the high blockage necessary

to maintain the cembustor pressure drop at the CF6-50 design level.

The amount of airflow passing through the swirl cans was controlled by

using different sized sir swirlers. Three sizes were designed (Figure 32)
with different f[low areas obtained by changing the pitch angle of the swirler
vanes. The swirler was brazed to a sheet metal sleeve to allow the axial

position of the swirler in the swirl can to be easily changed ........

The standard fuel injectors used with all Program Element I configura-

tions were open-ended 0.46-cm inside diameter stainless steel tubes, with

fuel metering accomplished external to the combustor (using fixed fuel

metering orifices). To accommodate 60, 72 or 90 fuel tubes from the existing

30 fueling ports in the CF6-50 combustor test rig, a variety of fuel tube con-

figurations was required. During most of the combustor tests, these fuel
tubes were connected to the fuel manifolds in a manner allowing individual --

control of the fuel flow to each annulus. With this setup, the effects of

radial fuel staging could be investigated. Upon occasion, the fuel tubes
were also hooked up to investigate circumferential sector fuel staging at
idle.
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The combustor inner and outer sheet metal cowls used with all of these

test configurations were designed with the aid of a Cener.al Electric aero-

dynamic analysis computer program to ensure that the proper combustor air-
flow distribution was obtained with a minimum of disturbance to the airflow.

_le inner and outer cooling liners were modified CF6-50 production combustor

liners, with all the dilution airflow ellminatod and the cooling air reduced

by flamespraying the cooling holes. The cowls and liners were interchangeable

among all the Swirl-Can-Modular Combustor configurations tested.

The various test configurations may be categorized into three classifi-

cations according to flameholder type. The various test configurations, in

this classification, are briefly described in the following sections.

,I Flat Flameholder Configurations - Seven combustor configurations with
flat flameholde_ designs-were tested. A summary of the key geometric
features of each of these test configurations is shown in Table XI.

In the first three Program Element I tests, flat flameholder combustor

configurations (I-I, 1--2 and 1-3) with 32, 90 and 60-swirl-can dome arrays,

respectively,.were evaluated to investigate the effects of the number of
swirl cans on the emissions and performance characteristics of the CF6-50

Swlrl-Can-Modular Combustor design approach. With the fourth test conflgu-

ration (1-4), the benefits of sector fuel staging on idle emissions were

investigated with the same 60-swirl-can combustor as used for Test Configura-
tion 1-3. Test Configuration I-ii also consisted of a 60-swirl--can eom-

buster, modified to produce a higher combustor pressure loss, to determine
the effect of changes in this important combustor design parameter on the

emissions levels. It was also used to investigate sector fuel staging as an

idle emissions reduction technique. Test Configuration 1-14 was a re-creatlon

o£ 1-2 in order to obtain more data with this configuration and to permit

a more confident extrapolation of its measured NOx emissions levels to engine

operating conditions. The final flat flameholder test configuration (III-i)

was designed as a part of the AST Addendum program. With this configuration

a large increase (about a factor o£ 3) Im the wetted perimeter of the flat

flameholders of the 60-swirl-can combus_or was obtained. The high airflow

swirlers were also used in _his configuration.

Counterswirl Flameholder Configuratlons - The comlterswirl flameholder--
combustor configurations featured the use of a-eounterrotatlng air swirler

mounted around the swirl can (Figure 33) to improve the fuel and air mixing

within the flameholder wakes. In this approach_ the outside swirler airstream

was intended to create an intense sheering zone with the fuel-air mixture

from the swirl can, allowing mere intense mixing and providing leaner, more

homogeneous dome mixtures. All oounterswlrl flalreholder test configurations

used the 72-swirl-can dome array. A su,_ary of the key geometric design
features is shown in Table XI.

The main design parameter investigated with this series of test configura-

tions was the fuel injection technique. In each of the four test eonfigura-

tions_ a different injection technique was used in an effort to further improve

the dome fuel-alr mixing. The four techniques employed are shown-schematically

in Figure 34.
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The initial eounterswirl flameholdar con|buster test configuration (1-5)

used the standard, open-ended fuel tubes. With these standard fuel tubeaD

vary low fuel inJectlon velociLieo were obtained, even at high power (high fuel

f3ow) operatin_ eonditlona, IL was felt that inereasinfi this fuel w_]ocity

might improve fuel atomization quality. "lllerefore,Test Configuration 1-6

featured the use of the standard fuel tubes, each with a _l_t]l diameter ori_

lice installed in its end. This orifice increased the velocity of the
injected fuel by a factor of almost seven. Flow visunlizatlon utud:Les showmd

that, by shortening _he standard fuel tube by about one cm, a much improved

fuel spray pattern could be obtained. R1_ia modification was incorporated
into Test Configuration 1-9. The final eounterswirl flameholdor test

configuration (1-16) incorporated small, pressure-atomizing sin_plex spray

nozzles to provide very good fuel atomization and distribution at all test

conditions. In addition, the air swirlers inside the swirl cans were removed

in order to obtain the highest airflow possible through the swirl cans.

Sheltered Flameholder Configurations - Six eombuster test configurations
featured the use of sheltered fla_eholders. This f-lameholder device was

designed with the axial dimension of the flameholder extended 1.27 em down-

stream from the plane of the swirl cans (Figure 35). This created a

"sheltered" region in the wake of the cans, and was intended to provide more

time for the swirl-can air and fuel to mix before entering the primary com-
bustion zone. All configurations used the 90-swirl-.can dome array. The

key geometric features of each configuration are shown in Table XI.

_e first three sheltered flameholder test configurations were intended to

determine the effects of varying the swirl-can airflow on the emissions and

performance characteristics of this combustor design. Test Configuration I-7

used the lowest flow-area air swirlers, while Test Configuration 1-8 incor-

porated the highest flow area swirlers, and Test Configuration I-i0 utilized

the intermediate flow area swirlers. In addition_ Test Configurations 1-8
and I-I0 (and.all succeeding sheltered flameholde_ _:_nfigurations) incorporated

a modification of the flameho).ders to raJse the conb,stor pressure loss to

the correct level. For Test Configuration 1-12, dilution holes were added to
the second cooling panel of the outer cooling liner in line with and between

each swirl can, in an effort to direct that portion of the dome-airflow
passing between the flameholders and the outer cowl into the primary combustion

zone. It was felt that a large amount of available combustion air was being

allowed to eucape the combustion zone along the outer liner. For Test

Configuration 1-13, this liner dilution air was eliminated and four small

holes were added to each flameholder just aft of the air swirler plar.e. These

latter flameholder dilution holes were found to provide improved fuel atomi-

zation quality from the swirl cans during fuel spray v_sualization tests.

_e final sheltered flamoholder test configuration (1-15) was a rebuild of Test

Configuration I-i0 and was evaluated in a more extensive test series, in-

eluding sea level ignition testing.
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Program Element II Comhustor Test Configurations

In Program Element II, three basic comhustor design concepts were

investigated; a Lean Dome Single Annular approach, a Lean Dome Double

Annular approach and a Radial/Axial Staged approach. The general arrange-

ments of these three design approaches are shown in Figures 24, 25 and 26.

All were designed for use with the existing CF6-50 production combustor

cooling liners.

In the Lean Dome Single Annular Combustor approach, greatly increased

percentages of the total combustor airflow were introduced into the iome,

or primary combustion zone. This lean dome approach involved the least q

degree of design modification of the production CF6-50 engine combustor. ]

However, to obtain satisfactory operation at low power with this lean dome _

design, variable geometry features to reduce the amounts of airflow into the

primary combustion zone would probably be needed. Many variable geometry

approaches involving a mechanical and/or fluidic modulation are conceivable.

Variable geometry modulations and actuation techniques were not investigated

in this program, but the potential advantages were assessed by testing fixed

geometry combustors with first a rich and then with a lean dome. In all, four

Single Annular Combustor configurations were investigated. Their design details

are described in a following section.--

The second of the basic concepts consisted of a Lean Dome Double Annular

Combustor approach. As in the Single Annul_r Dome approach, a key design
feature was the use of increased percentages of the total combustor airflow

into the dome, or primary zone. However, with this design approach all of

the fuel could be concentrated into one of the annuli at low power operating

conditions, thereby providing improved low power operation without variable

geometry. In all, six Double Annular Combustor configurations were investi-

gated. Their design details are described in a following section.

The third of these basic concepts consisted of a design in which bene-

ficial axial and radial fuel staging provisions were important features. In

this latter design, the pilot stage was specifically sized for low power

operation. In this design approach, all of the fuel is supplied to this pilot

stage at low power operating conditions. At the higher engine power operating

conditions, the second or main stage is also fueled. This latter stage, which

handles a high percentage of the total combustor airflow, is displaced not

only radially but axially from the pilot stage. The main stage fuel is pre-

mixed, to some degree, with its airflow and, therefore, the resulting fuel-
air mixtures that flow into its combustion zone are lean and _elatively uniform.

The burning of these lean mixtures is stabilized by the pilot stage of the

combustor. In all, seven Radial/Axlal Staged Combustor confisuratlons were

investigated and their design details are described in a following section.

Except for the Single Annular Combustor configuration, all of the com-

buster design concepts investigated within Program Element II utilized airblast

fuel injection techniques. Figure 36 illustrates the general features of these
fuel injection devices. In previously conducted General Electric deve)opment
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_Low Pressure Drop

Fuel Injector

Figure 36, General Features, General Electric Airblast Fuel-Air

Atomizatlon_iixing Device.
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programs, the use of fuel injection techniques of thls kind resulted in 1

significant reductions in both CO and HC emissions levels, as compared to the

levels obtained with more conventional pressurized fuel spray nozzle atomi-

zation. With airblast fuel injection methods of this kind, the fuel is

injected at low pressures and Is atomized in swlrl-cup devices by a portion

of the eombustor airflow. Since the fuel atomization process is primarily

dependent on the air kinetic energy rather than on fuel pressure, very

effective fuel atomization and fuel-air mixing may be attained over wide

ranges of engine operating conditions, including Idle. In the Single Annular

Combustor configurations, fuel injection was accomplished by use of standard

pressure-atomlzing CF6-50 engine fuel nozzles. These nozzles produce good

fuel atomization with low fuel flows by using a small primary orifice_ as well

as with high fuel flows through the utilization of an additional larger _I
secondary orifice. The dual-orlfice operation is accomplished by a pressure-

activated valve. This method provides good fuel atomization over the entire

range of engine operating conditions.

Single Annular Combustor Confi_uratlons - The general arrangement of

the Single Annular Combustor test configurations is shown in Figure 37.

The combustor assembly consisted of a dome, a cowl and cooling liners. The

first test configuration (II-l) consisted of a production CF6-50 engine com-

buster. For the three lead dome combustor configurations, these same basic

configurations, but modified, were used. The dome modifications consisted of

installing counterrotating high airflow secondary swlrlers and dome dilution

holes. The dome dilution holes were used only because the swlrler airflow

could not be increased further. The key design parameters of these combustors

are shown In Table XII.-_ A photograph of the dome in the assembled combustor

is shown in Figure 38. The cooling modifications consisted of reducing the

cooling flow metering hole areas and closing the dilution boles.

The production eow_ assembly was used for Test Configuration II-2, but

the pressure drop was higher than planned. This cowl was found to excessively

throttle the airflow into the dome array. For the last two tests, the cowl

was cut back, which eliminated this airflow throttling.

Double Annular Comhustor Configurations - _*e general arrangement of the

Double Annular Combustor desig, approach is shown in Figure 39 and its key

design parameters are tabulated in Table XIII. The eombustor assembled for

the first test is shown in Figure 40. The fuel injector assemblies used in

all test configurations are shown in Figure 41. The eombuster assembly con-

sisted of a dome assembly, a cowl and modified CF6-50 production eombustor

cooling liners.

The dome assembly consisted of two annular spectacle plates separated by

_ a small centerbody. Assembled in the spectacle plates was an array of 60 air

swlrlers (30 in each annulus). The sir swirler components consisted of a

primary air swirler/venturi casting, a counterrotatlng secondary air swlrler,

a flameshleld and a retainer ring. The air swlrler assemblies were attached

to the dome spectacle plates with a radial sllp Joint arrangement to accom-

modate mechanical staekup and thermal growth between the fuel injectors and

the comhustor assembly. The flameshlelds were implngement cooled. The

¢enterbody and dome panels were film cooled using wiggle strip construction.
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Table XII. Sugary of Design Parameters,

Single Annular Combustor Test Conflguratlona.

Test II-i 11-2 II-3,5

Configuration

Combustor Production CF6-50 Single Lean Dome Single Lean Dome

Type

Pressure

Loss-% at SLSTO 4.30 5.90 4.80

Dome Airflow

% Combustor Total

Swlr let 17. i 67.8 69.2

Dilution -0- 5.3 6.5

Total 17. i 73. i 75.7

Liner Dilution

Air flow_. %

Panel 1 6.0 -0- -0-

Panel 2 ii. 6 -0- -0-

Panel 4-6 19.4 -0- -0-

Coolin B Airflow

% of Total

Dome 14.2 4.1 5.1
Liner 31.7 22.8 19.2

Total 45.9 26.9 24.3

Geometry .... Common to all Configurations.

Dome Height, em.......... 11.34

Burning Length, era-........ 34.80

Fuel In_. Spacing, cm-..... 6.93

Dome Exit Area, cm2....... 2409

Volume, em3............... 67,960
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I

Table Xlll. Summary of Design Parameters,
Double Annular Dome Combustor Test Configurations.

Test

Configuration II-4 11-8 ii-9 II-ii 11-13 If-16 All

Pressure Loss

Total, at SLTO, % 4.?5 4.65 4.32 4.72 5.42 5.80 .....

Airflow Distributions,
% of Combustor Airflow

Outer Annulus

Swirler 32.7 18.4 18.4 18.4 18.0 12.2

Dilut ion none 14.9 none none none none
i

Total 32.7 33.3 18.4 18.4 18.0 12.2 .....

Inner Annulus i
Swirler 32.7 18.4 33.0 33.0 34.5 37.0 .....

Dilutlon none 13.7 13.8 13.8 17.5 18.7 ....

Total 32.7 32.1 46.8 46.8 52.0 55.7 .....

Cooling Airflows,
Both Annuli

i Do_e .............................................. 7.8 to 9.0
Centerbody ...................................... 3.3 to 3.7
Liner ............................................. 17.2 to 23.6

Dome Height (1), cm
! .... 5.69Outer Annulus ..........................................

Inner Annulus ........................................ 5.33

Overall ....................................... 11.35

Burning Length, cm
Outer Annulus ......................................... 5.08

-- -------------------------------- ---------------- -- -----
Inner Annulus ............... 5.08

Overall ..................................... 30.35

Fuel In,. Spacing, cm
--------------------------.... -------------- ------ -------- -- --Outer Annulus ............. 7.73

Inner Annulus ............................... 6.34

Area (1), om2
Outer Annulus ................................ 1311

-- ------------------------------------ ---- -- -------- ---- --Inner Annulus ................. 1028
Overall .......................... 2409 ....

3
Volume_ cm

(2) ...................................Outer Annulus ........... 6541
(2) ................Inner Annulus ............................. 5097

-- -------------------- -------- -- -- ------ ___Overall ...................... 54,991

Superscripts:
(i) --- At trailing edge of centsrbody

(2) --- From flameshlelds to trailing edge of centerbody
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Flgurc dl. Fttol Injector Assemblles, l)ouble Annular Combttstor.
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The cooling liners were modified in that tlm ceollng flow metering hole

areas were reduced and tile standard _ilution holes were closed, Hewever,
now dilution holes wore added for some of these test configurations.

The 60 fuel injectors (30 assemblies) consisted of low pressure drop

devices which were inserted in the normal manner (externally) after the tom-

buster was installed in the tes_ rig. The fuel injector tip and counter-
rotating air swirler comblnat_Jn used in these combusters is an alrblast fuel

atomlzatlon/mixlng device pre_iously developed at General Electric for use in

advanced engine combustors. For this program, the fuel injector tip/prlmary

air swlrler design was used intact, but new higher airflow secondary air
swirlers were designed. The key dimensions of the fuel injector/alr swlrler

assembly are shown in Fi_are 42.

SixDouble Annular Combuster test configurations were investigated. Each

change was syetematlcglly made to more nearly approach the exhaustemissions

goals. The key design parameter variations, as shown in Figure 43 end Table
XlII, were:

• Airflow split betweendome air swirlers and liner dilution holes.

• Airflow split betwen inner and outer annuli.
!

• Location and type of dilution holes. I

In the first two test configurations (11-4 and 11-8), all of the cembustor _

airflow (except that required for cooling) was equally split between the inner

and outer annull, and the split between dome air ew_rlere and line: dilution 1

holes was varied. In the last four test configurations (11-9, II-ll, II-13,
II-16), the airflow was highly biased to the inner annulus and the location and q

type of dilution holes were also varied. In each case where liner dilution

holes were used, they were located in line and between each fuel injector (60
|

holes per liner). Simple flush holes were used in Test Configurations II-8,
II-9 and ll-ll. Thlmbled holes (Figure 43) were utilized in Test Configurations

11-13 and 11-16 to provide better penetration of the dilution air Jets. In test I

conflgurations where the dome swlrler airflows were reduced, the reductions were

made by blocking vanes of the secondary air swlrlers.

Radlal/Axlal Sta_ed Combustor Configurations - The general arrangement of
the Radial/Axlal Staged Cembustor is shown in Figure 44. The cembuster

assembled for the first test is shown in Figure 45. The fuel injector

assemblies are shown in Figure 46. The combustor assembly consisted of a

pilot stage dome assembly, a main stage flameholder/ohute assembly, a cowl,

and modified CF6-50 production combustor cooling liners.

The pilot dome assembly consisted of an annular spectacle plate and an

array ef 30 air swlrlers similar to these in the Double Annular Combustor

configurations. The air swlrler components consisted of a primary air

swlrler/venturi casting, a counterrotating secondary air swirler, a flame-
shield and a retainer ring. The air swirler assemblies were attached to the

dome with a radial sllp Joint arrangement to accommodate mechanical stackup
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\ _ Primary Swirler - -J]__ __

Fuel Injector _ 4.06

L
_F]ame Shield

Lineal" dilllOllsiolIs are

in centimeters. -1.19

Figure 42. Fuel Injector/Air Swirler Details, Double
Annular Dome Combustor.

91

00000002-TSA13



92

00000002-TSA14



I! ooooooo2-TsBol



!

I

Figtare 45. Radial/Axial Staged Combustor Assembly, Forward Looking Aft.
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and thermal growth between the fuel injectors and the combuetor assembly.

The flameshlelds were impingement cooled. The dome panels were film cooled

using a stacked ring construction.

The main stage flameholder assembly (Figure 47) consisted of an array of

60 sloping high blockage (about 80 percent) flameholders which were aeml-
circular in cross section. The flameholder width was constant from base to tip

so the main stage air admission gap or "chute" width varied slightly from

the inner to outer diameter. In this design approach, the base of the flame-

holders opens to permit the pilot combustion products to flow radially outward

in the flameholder wakes and pilot the main stage combustion process. An

array of cooling air holes at the tip of the flameholders was used to cool the

outer flameholder/cowl/liner joint which was followed immediately by a filu

cooling slot in the outer liner. "_

The cowl contained a flow splitter to: (i) form a smooth flowpath for

the main stage air, and (2) isolate the main stage fuel-alr mixture from

the pilot outer film cooling air. The main stage flowpath was designed to

smoothly accelerate the main stage air from about 46 m/s at the inlet to
about 91 m/s at the fuel injection station and to about 137 m/s at the chute

i
exit surface.

The pilot stage fuel injector/air swirler combination consisted of an

airblast fuel atomization/mixing device, as was previously described. The main

stage fuel injectors consisted of 60 simple low pressure drop spraybars, each

having a pair of opposed circumferentially-dlrected orifices (0.103-cm dia-

meter). The fuel injector assemblies were installed in the rig from the
inside before the combustor was installed. This design was selected for

screening tests so that the main stage fuel injector location and/or conflgura-

tlon could be changed readily. In actual engine application, these injectors

might be mounted radially from new pads in the outer casing.

The cooling liners were modified in that cooling flow metering hole areas
were reduced and dilution holes were closed. The outer liner was also

shortened.

Seven Radlal/Axial Staged Combustor test configurations were evaluated.

The key design parameter variations are shown in Table XIV and Figure 48. The

emissions goals of the Phase I Program were very nearly approached with the

first test configuration, but with somewhat reduced combustion efficiency
levels at high power operating conditions. The design variations that were

investigated included:

e Adding splash plates (Figure 49) to the main stage fuel

injectors. Flow visualization tests showed the original

fuel injectors provided good circumferential but limited

_ radial fuel apreadln_. The splash plates increased the

radial extent of fuel spread at some expense to clrcum-

i ferentlal spreading.
9S
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Table XIV. Summary of Design Parameters,

Radial/Axial Staged Combustor Test Configurations.

Test II-5,7 II-i0 11-12,15 II-14 III-2 All
Configuration

Pressure Loss

Total, at SLTO, % 4.75 4.75 5.15 5.16 3.95 --.............

Airflo_ Distributions,
% of Combustor Airflow

Pilot Stage Swirler 12.7 12.7 10.8 8.2 9.3 ---

Main Stage Chutes 59.2 59.2 60.4 62.3 64.5 ....

Cooling Flows

Pilot .................... 10.8 to 11.3
Liners ........................................... 15.4 to 17.2

Fuel Injectors

Pilot Stage

Type .............. Fuel Nogzle
Spacings cm .........................- " - --- ----------- 6.65

Main Stage-Type Plaln Splash Splash -- Splash Splash
Plates Plates Plates Plates ----

Burning Length_ cm

Pilot Stage(l) ............................................. 8.51

Overall ................. 30.35

3
Volume, cm

Pilot Stage ............. 14,978

Overall ................................"- --- ----- - - 54,110

Pilot Stage Dome

..................................... 8.04Height, cm 2 ........
Area at Exltj cm ..................... !D491

Superscript: (i) --- From dome flameshields to main stage flameholders.

98

j* i

O0000002-TSB06



Configuration I.T- 10
._.' Configu_ations II-6, 7

Configuration II-14
Configurations If-12, 15

\__ Airflows are Percent of Combustcr Airflow

; Configuration III-2
I

Figure 48. Design Parameter Variations, Radial./Axial Staged Combustor.
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• Reducing the pilot stage airflow. _le intent was to bias

the fuel further to the main stage while holding or

increasing the pilot stage outlet temperature. Pilot

stage airflow was reduced by closing off some of the

secondary air swlrler flow passages.

• Adding turning vanes to the main stage chutes (Figure 50)

to promote more intense mixing between the pilot and
main stage flows.

i Throughout these tests, the fuel injectors were manifolded so that

various fueling modes and wide variations in fuel flow §pllts could be

I investigated.
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EXPERIMENTAL RESULTS i
!

In the basic Phase I Program, 34 combustor configurations were evaluatecL

In the following sections of this chapter, the results of these tests, cate-

gorized by combustor design type, are presented. The actual sequencing of

these various tests that was used in conducting this development effort is
presented in Appendix C. An extensive quantity of data was accumulated in

these tests. These data, particularly the pollutant emissions level data,
were consistently found to be of high quality. This assessment of the data i

quality is based on several factors including the generally excellent 4
instrumentation calibration consistency, metered-to-sample fuel-alr ratio

agreement, data repeatability and consistency of data trends.

In eacb program element of the basic Phase I Program, 16 test configura-

tions were defined and evaluated. As a part of these tests, piggybacked
evaluations of several of these test configurations were also conducted at

combustor operating conditions which would be associated with an AST engine

at supersonic cruise. These piggybacked tests were carried out as a part of
the AST Addendum. Also as a part of this addendum, a special version of a

Program Element I test configuration and a Program Element II test conflgura- .
tion was defined. These two configurations were then evaluated at the AST

cruise conditions. In these latter two testa, piggyback evaluations at the

combustor operating conditions of the CF6-50 engine were also included. Thus,
in each element of the basic program 17 combustor configurations were tested

at the operating conditions of the CF6-50 engine.

Detailed summaries of the results of these tests are presented in Appendix

C. In the following discussions, the key results, with emphasis on the pollu-
tant emissions results, are presented.

Program Element I Results

The key pollutant emissions level results obtained with the 17 NASA

Swlrl-Can-Modular CF6-50 combustor configurations at standard day idle, hot
day approach, hot day climbout, hot day takeoff and standard day cruise

operating conditions of the CF6-50 engine are presented in Tables X_, XVI,

XVII, XVIII and XlX, respectively. In general, only relatively small reductions

in pollutant emissions levels were obtained with this CF6-50 eombustor design

approach. However, at the idle and intermediate engine power operating condi-

tions, significant NOx emissions level reductions with high combustion effi-

ciency levels were obtained. The significant findings of these Program Element
I tests follow.

Flat Flameholder Combustor ConfiBuratlone - Seven Flat Flameholder test

configurations were evaluated. In this series of test configurations, the

lowest CO and HC emissions levels at idle operating conditions of any of the

Progrom Element I test configurations were obtained (Configurations I-3 and

I-4). However, excessive flameholder metal temperatures generally limited the

high power testing of this series of test configurations.
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Table XVI, Ilot Day Appr)ach Emissiens Data, NASA Swirl-Can-Modular CF6-50

Combusto_'s •

En_ilteCombu_tor Condltlon__9.l _ TT3 Vrof Fuel-Air Ratio
11,6 aim 661° K 26._-_/a 0,0142

RLg Teatlng At Reduced Pressures Up to 9,6 aim, Other CondltLona bupllcatcd,

Oxldos of Carbon Unburned Combustion Smoke
Nitrogen Honoxlde Hydrocarbons Efficiency Dumber
glkg Fuel glkg Fuel glkg Fuel Z St@:No.

Program Goals ............ 99+ .......

CF6-50 Ensino Z2.0 4,O 0.1 99.9 S

CF6-50 Engine ItlgData 10.7 7.5 0.3 99,8 .......

Swixl-Can Combuatoz Configurations:

72-Module Flat Platg Array
Configuration I-1 8.2 28.0 8.9 98.4 .......

90-Ho_ute Flat Pta_h' Attar
Configuration I-2 5.8 31.0 2.8 99.0 .......
Configuration 1-14 5.35 57.5 6.5 98.0 ........
180" Sucto_ Burning Si_latlon at

F/A - 0.0284 9.30 23_0 O.69 99.3

60-Module Plat Plate Array
Congigurat ton I-3,4

P_3 " 3,4 aim 6,15 40,0 2,44 98,8 2
PT3 " 6,8 otto 6.74 22,4 1,32 99.4 .......

Configuration I-L! 5.90 60.0 S.O 98.1 .......
180" Ssctor Burning Simulation at
F/A • 0.0284 8.69 24.5 0.6 99.4 ........

Configuration 111-I AS'rDesign 6.30 19.0 14.6 96.5 1
180° Secto_ Sur_ing Simulation at
F/A " 0,0284 8,95 37,0 1.2 99.0

72.-Nodule Counterswlrl Slameholder ,Array
Conrigor_tlo_tI-5 6.2 79.0 li.5 96,9 i
Configuration f-6 6.55* ..................
Configuration I-9 4_15 107. 41.3 92.2 .......

180 ° Sector Burning Simulation at
F/A - 0.0284 8.55 24.0 1.5 99.3 .......

ConflDuration I-lb 2,0 131. 262.- 70.1 .......
180+ Sector Burning Simulation at
F/A- 0.028_ 8.9 _ _S,0 l.O 99,3 .......

90-Hodule Sheltered Fla_holder Array
Configuzation 1-7 7.2 B1.5 26.0 95.5
Configuration I-8 6.6 79.0 22.5 96.1 .......

180 ° Sector Burning Simulation at
F/A t 0.0284 9,8 36.0 2.0 99.0 .......

Configuration 1-10.15 6,7 71,0 16.0 96.7 .......
180° Sorter Bur.lng Slmulatlon at
F/A - 0,0284 9,8 33,0 2.0 99,0 .......

Configuration 1-12 6,7 73,0 131, B5.2 .......
180° Sector Surntng Simulation at

F/A • 0,0284 9.4 30,0 7.0 98,6 .......
Configuration 1-13 6.1 80.0 16.0 96.6 .......
180t Sector gut'_tn 8 Simulation at
F/A - 0,0284 9,8 31.0 1,8 99,1 ........

Note: *No Hot Day Approach Rig Data Obtained for This Configuration. The NOx Data Preaunted Above
Were Extrapolated Fro_ CTOLCruise gl 8 Data.

m
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Table XVII. flat Day Cllmbout Emissions Data, NASA Swil'l-Can-Modul_r CF6-50

Combustors.

Ens£ne Combustor-Eondltlons_ PT3 _ Vref Fuel-Mr Ratio
28.3 otto 823" K 25--_m/B 0.D22-_--_

I Ri 8 Teetin8 at _d_¢_d Pressure U_to 9.6 aim.- Oth_ Conditions D_p_tc_ted,

Oxides of Carbon Unbun_ed Combination Smoke *
Nit learn Monoxide Hydrocarbons Efficiency Number

8/k 8 Fuel, 8/k8 Yual g/k 8 Fuel % SAE No.

ProRram Goals ........... 99+ ....... !

CF6-30 Engine 36, 0 O, 3 O. 1 99.9 12

CF6-30 Engine Combusto_, R/8 Data 32,0 0.3 0,1 99.9 2

Swtrl-Ca_ Co_ustor Co_fl_rationa:

72-Module Flat Plate Arra_
Confi_uration I-l 31.6" ................

90-Module Flat Plate A_a_
ConflEuratlon I-2 23.88 1.1 -0- 100 .......
ConfiNuratlon 1-14 27.20 ...... g9.9+Q .......

60-Module Flat Plate Arra_
Configuration I-3_4 --_-RoEiSh Po_e_ Data Obta£nad
Conftsuratton I-Ii 30.4* ................
Conflguration III-i AST Desl_t 27.6@ ................

72-Module Counterswirl Flameholder Arra7
C_ flSur_tlon I-5 _E.6 9.9 -0- 99.8 0
Confiauration I-6 28.0@ ...... 99.5+ .......
configuration I-9 26.2@ ..... 99.6+ .......
Confl0uratlon 1-16 24.6 10.0 1.25 99.6 .......

90-Modul_ Sheltered _la_bolde¢ Ar_a_
Configuration I-7 28.7 9.2 _2,3 99.6 3
C_ftgurat_o_ 1-8
PI3 • 4.76 aim 30.0 0.7 6,4 99.2 .......
PT3 • 6,80 aim 30.0 6.0 4.6 99.4 .......

Conflsuratlon 1-10,15

PT3 = 4,76 atm 30.8 74. 0,I 98.36.80 30,8 5.4 0,3 99.8_'3 aim .......
Confiaurac Ion Z-12 30,I 6.6 1,4 99.8 .......
Configuration 1-13 34.6 3._ 2.3 99.9 .......

Notes: For the Above Modela_ Data at Hot Day Clt_out Conditions Were Not Obtained. '_to D _(
_resent_d Above Were Extrapolated FrO_ the Follo_in_ Co_d£blon_

•From Hot Day Approach Rt 8 D.ta,

0From CTOL Cruise Rig Data.

@FtO_ _ot Day Takeof_ P_B Data,
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Table XVIII. Hot Day Takeoff Emissions Data, NASA Swirl-Can-Modular
CFC_ 50 Combustors.

_l_Ine Combustor Conditions: PT3 TT3 Vraf Fuel-Air _tio
29.1 arm 8--5"8° K _/s 0.0243

_g Testing At Reduced Pressure Up to 9.6 atm. Uther Conditions Duplicated,

Oxides of Carbon Unburned Combustion Smoke

Nitrogen Monoxide Hydrocarbons Efficiency Number

g/kg Fuel g/kg Fuel g/kg Fuel % BAE No,

FrogramOoals 10 ....... 99+ 15

CF6-30 Engine 44.0 0.2 0.I 99.9 12

CF6-50 Combtmtor It[ 8 Data 41.2 0.4 -0- 99.9 1

Swlrl-Can Combustor Configurations:

72-Module Flat Plate Array
Configuration I-1 44.1" ..............

90-Module Flat Plate Array
Configuration 1-2 33.6# ....... 100# .....
Configuration 1-14 38./@-- ........ 99,9@ .....

n0-Module Flat Plate Array

Configuration I-3.4 -- No High Pester Da_a Obtained.
Configuration I-Ii 39.7* ........ 99.4+* .....

Configuration IIf-lj PT3 " 4.8 aim 37.5 9.0 0.I 99.8 2

Configuration llf-l, PT3 " 6,3 aim 37,5 9.1 0.1 99.8 .....

72-Module Counterswlrl Elameholder Array

Configuration f-5 37.6 12.0 -0- 99.7 25

Configuration I-6 37,0 12,7 0,4 99,7 6 !
Configuration I-9 37.2 3.2 0.9 99.9 .....

Configuration 1-16 34.6c ....... 99.7+¢ ....

90-MOdule Sheltered Flameholder Array i
Conflduratlon I-7 38.5# ...... 99.6¢ .....

Configuration I-8 39.7 8.6 0.3 99.8 .....

Configuration I-I0_15 39.1 5,9 -0- 99.9 .....

Configuration 1-12 38.5 9.1 0,3 99.8 .....

Configuration 1-13 46.1# ...... 99.9+@ .....

Notes -- * No Hot Day Takeoff Data Taken For This Configuration. The NUx and Combustion Efficiency
Data Presented Above Were gxtrapolatod From Hot Day Approach Rig Data.

-- 0 NO Hot Day Takeoff Data Obtained For This Configuration. The NOx Combustion Efficiency
Data Presented Above Were Extrapolated From Dot Day Climbout Rig Data. i

-- @ No }lot Day Takeoff Data Obtained For _is Configuration. The NOx And Combustion _]
Efficiency Data Presented Above Were Extrapolated From CTUI. Cruise Rt 8 Data.

-- ¢ No Hot Day Takeoff Data Taken For Thin Configuration. The NUx and Combustion
Efficiency Data Presented Above Were Extrapolated From Hot Day Approach_
Climbout. and CTOL Cruise Data,
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The first tests in this series were aimed at determining the effect o£
the number of swirl-can modules (60, 72, or 90) on emissions levels. The

NOx emissions levels at the takeoff condition were found to be about the
same as those of the CF6-50 production engine combustor and no strong effect

of number of modules was found. The 90-swirl-can combustor (Configuration 1-2)

tended to provide lower NOx levels, but very limited data were obtained because

of excessive flameholder temperatures. A retest of this configuration (Configura
tion 1-14) with a slightly reduced liner cooling airflow, in which more exten-

sive data were obtained, indicated that the effect of the number of modules

was very weak. Two other parameters were varied in this series in an effort

to reduce NOx emissions levels: increased combustor pressure drop, with no
improvement (Configuration I-ii); and increased flameholdsr perimeter (Con-

figuration III-i).

As expected, the idle emissions levels were highly dependent upon fueling

mode. For a common fueling mode these levels tended to increase with the

number of swirl-can modules. When only the inner, annulus was fueled, the idle

emissions levels of the 60-swirl-can eombustor (Configuration 1-3) were slightly

lower than those of the CF6-50 production engine combustor. Various modes of

fueling the 60-swirl-can eombustor were evaluated. Sector burning with half
the modules fueled produced about the same CO and HC emissions levels as inner

annulus burning. The results of varying the sector size showed that the HC

emissions levels continued to decrease as sector size was decreased, but that
a minimum CO emission level was obtained with _ sector size of about 180 degrees

(for. the nominal overall fuel-alr ratio of about 0.014).

Combustion efficiency levels at all higher engine power test conditions

were consistently high (generally above 99.5 percent) and smoke emission levels

were very low, as anticipated. The exit temperature profile characteristics

were also generally favorable considering the development nature of the hard-

ware. Relatively heavy carbon buildups on the downstream face of the swirlers

end flameholders of the swirl-can modules were generally observed in posttest

inspections of these test configurations.

Counterswirl Flameholder Configurations - Four Counterswirl Flameholder
test configurations, all with 72-swirl-can modules, were evaluated. In this

series of test configurations, no tests were limited by flameholder metal
temperatures. One of the configurations (Configuration 1-16) produced the

lowest NOx emissions level of any of the Swirl-Can-Modular Combustors that
were tested.

The main design parameter investigated in this series was fuel injection

technique. Some small effects on NO x emissions characteristics were found.

In the first configuration (Configuration 1-5), the standard fuel injector

was used. In the second configuration (Configuration I-6), an orifice was

added to the end of each fuel injector tube_ which produced no change. The

last two configurations (Configuration 1-9, with a shortened fuel tube, and

Configuration 1-16, with pressure-atomizing fuel nozzles and increased swirl-

can flow) produced reductions at the hot day takeoff conditions. The hot day

takeoff N0x emission index of Configuration 1-16 wss 35g/kg fuel, which was
the lowest obtained with any Swirl-Can-Modular Combustor in this program.

II0
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The idle emissions levels of this series of test configurations wore

relatively unaffected by the fuel injector changes and were generally higher

thau those of the CF6-50 production engine oombustor. Annulus burning was

the oaly fuel staging mode investigated. The Flat Flmmeholder comhustor test

results suggest that somewhat lower idle emissions levels might have been

obtained with these Counterswirl Flameholder configurations with the use of
sector burning,

The combustion efficiency levels at the higher power tost conditions were

consistently high in this series (generally above 99.8 percent). Relatively
high smoke levels were obtained with Configuration l-hi but low levels were

measured wit_Conflguration I-6, indicating that the fuel injector modification
was somewhat effective. Carbon accumulation on the swlrlers and flameholders

of the modules was relatively heavy in this series.

Sheltered Flameholder Configurations - Six Sheltered Flameholder test
configurations, all with 90-swirl-can modules, were evaluated. Only one test

configuration (Configuration 1-13) in this series was llmltod by flameholder
metal temperatures. This latter configuration also produced the hlghest NOx

level of any Swlrl-Can-Modular Combustor tested.

The design variables investigated in this series included swlrl-can air-

flow quantity, overall pressure drop and alternate dilution air introduction

methods. Except for the use of flameholder dilution (Configuration 1-13),

these changes had virtually no effect on NOx emissions levels. Higher pressure

drop (Configuration 1-10) was somewhat effective at lower fuel-elf ratios,

but at the hot day takeoff conditions the NOx level was relatively unaffected.
The Idle omissions levels were also relatively insensitive to these configura-

tion changes. Sector burning agai_ was found to be the best fueling mode,
especially with respect to HC emissions.

Again in this series, the combustion efficiency levels at the higher

power test conditions wore consistently high (generally above 99.8 percent)
and the smoke levels were low. The exit temperature profile charaeterfstlcs

were somewhat poorer than those of the Flat Flameholder configurations, due
mainly to the difficulty in maintaining dimensional uniformity of the dome

arrays. Carbonlng tendencies were less noticeable in this series than in

either the Counterswirl or Flat Flameholder configuration test serles.

One of these configurations (Configuration I-I0) was selected for more

extensive investigations. This solectlon was made primarily because operation

was possible at all required high engine power modes with this test configura-

tion. In these additional evaluations (as Configuration 1-15), the sea level

ignition charaetorlstics of the combustor were measured (Figure 51).. The fuel

flow rates required for both lean blowout and full flame propagations were

found to be higher than those of the CF6-50 production engine oombustor, in-

dicating that further development would be required to meet the CF6-50 altitude
rellght requirements.
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Figure 51. Sea Level Ignition Characteristics, 90-Swirl-Can/Sheltered

Flameholder Combustor, Configuration 1-15.
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Program Element II Results

Single Annular CF6-50 Combustor Configurations - Four single annular
configurations were evaluated in Program Element II. The key pollutant
emissions level results obtained with these test configurations are presented--

in Tables XE, XXI, XXII, XXIII, KXIV and XXV.

The first configuration. (Configuration II-I) in this series consisted

of a production CF6-50 engine combustor with modified fuel supply plumbing

arrays. The objectives of this first test were threefold:

• Check out all testing procedures, including the emissions data

acquisition procedures, for use throughout the program.

s Obtain baseline pollutant emissions and combustor performance data.

s Determine the degree of idle emissions reductions obtainable in

a conventional single annular combuetor by the use of fuel.

staging or CDP bleed air extraction methods at idle operating
conditions.

All three objectives were achieved. The newly defined e_n_aust gas

sampling equipment and procedures designed specifically for this program

performed as planned. The measured emissions levels agreed closely with

the levels predicted from CF6-50 engine tests. The NOx emissions levels
decreased linearly with fuel-alr ratio at takeoff operating condltlons, which

is typical of conventional (rich) combustor dome designs.

With CDP bleed air extraction or sector burning at idle operating con-

ditions, significant CO and HC emissions level reductions were obtained, as
shown-in Table XX. The use of increased bleed air-extraction reduces the

combusto_ reference velocity, which itself is effective (increased residence

time), but more importantly increases the fuel flow rate required to maintain

engine speed. Combined, these effects significantly increase the combustor
fuel-air ratio. Fueling alternate nozzles at idle compared to fueling all of

the nozzles produced virtually no change in emissions levels. However,

sector burning (15 nozzles fueled in 2 opposed sectors) provided significant
reductions.. The results indicate that further reductions might have been

achieved by:fuellng fewer nozzles and/or group ln_ the fueled nozzles into one
continuous sector (rather than two sectors), since a major portion of the
emissions occurred in the interface region. It appears that the lean

interface quenching effect is the reason why fueling alternate nozzles is
ineffective and sector burning is effective.

Three Lean Dome Single Annular Combustor configurations (Configurations

i 11-2, II-3 and 11-5) were tested. In these configurations all of the combuetor

airflow, except that required for liner cooling, was introduced into the

dome. The first configuration (Configuration 11-2) produced a large reduction

in NOx levels at low fuel-alr ratios, but at the hot day takeoff conditions,

the NOx level was the same as that of the CF6-50 production engine combuetor.

Apparently, the fuel-elf mixing rate was slow compared to the combustion rate.

The idle emissions were very hlgh, even with sector burning, and the high
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power combustion efficiency levels had all of the chsracterlstiee of a truly

lenn dome combttstor, Also, its pressure drop was hi_3, Poattest data

analyses and flow calibrations showed that the combustor cowl was undersized.
The cowl flew area was thee increased which lowered the overall eombnstor

pressure drop while Increaslng both the dome pressure drop end dome airflow.
111e co_ustor was retested as Configurations II-3 and 11-5. This modifica-

tion provided a modest reduction, in NOx levels at all fuel-elf ratios.
However, at this point, their,can Dome _ngle Annular Comhustor desl_

approach was abandoned because :

a Relatively little progress had been made in reducing NOx
emissions levels.

_, • The data indicated that, even if significant NOx reductions .were
achieved, the Idle emissions goals would be very difficult to

approach even with conventional dome flows at Idle, as in

Configuration 11-1.

• Both the Double Annular and Radial/Axlal Staged Combustor

design approaches indicated more promise.

Double Annular Combustor Configurations - Six Lean Dome Double Annular
Combustor configurations were evaluated. The key pollutant emissions level

results obtained with these configurations are presented in Tables XXVI,

XXVII, XXVIII, XXIX, XEX and XXXI.

In this series, significant effects of airflow distribution and fuel

flow split between the two dome annull on emissions levels were found. No

significant reductions in emissions levels were obtained when the airflow
was split equally between the annuli, as was used in the initial configura-

tion (Configuration II-4). Idle and NO x emissions levels very similar to
those of the Lean Dome Single Annular Combustor were obtained, indicating

that doubling the number of fuel injection points was not of itself a

greet enou_ Lh_age. A lower dome flow.configuration (Configuration 11-8)

improved the id.,.e emissions levels somewhat, but the NOx emissions levels
were even higher than those of the CF6-50 production engine combuetor. These

trends together_ with the favorable results obtained with the Radial/Axial

Staged Combustor led to the biased airflow approach utilized in the subsequent

Double Annular Combustor test configurations.

Signi£icant reductions in both idle and NOx emissions levels were
obtained when the airflow was heavily biased to the inner annulus. In test_

of these types of configurations (Configurations II-9, II-ll, 11-13 and 11-16),

the fuel flow split between annuli (at high power) and the location and

type of the inner dome dilution air entry holes were fot_Id to be important

parameters in addition to the overall airflow split between annull. As is

shown in Figure 52, the NOx levels were progressively reduced when the inner

liner dilution holes were moved forward (Configuration II-ll versus II-9),
when thimbles were added to increase the dilution air Jet penetration (Con-

_ figuration II-13 versus II-ll) and when the airflow was further biased to the

_: inner annulus (Configuration II-16 versus II-13), These trends strongly

1.20
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Table XXVlI. Ilet Day Approach Emissions Data, Double Annular CF6-50 Combustors.

i
I

PT33 TT3 Vre_ Fuel-Air Ratio
En=_ine Combustor Conditions: ii.6 arm 661-_K 26.3 m/s 0.0142

Rig Testing at Reduced Pressures Up to 9,6 arm. Other Conditions Duplicated.

Oxides of Carbon Unburned Combustion Smoke "I
,, Nitrogen Monoxide Hydrocarbons- Efficiency Number

: g/kg Fuel g/kg Fuel g/kg Fuel X SAE No.

Program Goals ............. 99+ ....

CP6-50 Engine 12.0 4.0 0.I 99.9 5

CF6-50 Combustor Rig Data

(At PT3 " 6.8 arm) 10,7 7.5 0,3 __.____8____---- i

Double Annular Combustor Configurations:

11-4 PT3 ffi3,40 atm
Pilot F/A- 0.0071 3.85 146 48 91.8 ....

II-8 PT3 = 3.40 atm
Pilot F/A _ 0.0071 6.45 31 1.7 99.1 ....

i80*-Seetor Burning Simulation

Total F/A - 0.0284; Pilot F/A 10,3 1,0 -0- i00 ....
= 0.0142

II-9 PT3 " 3.40 arm
Pilot Only Fueled 12,7 26,0 0,2 99,4 ....

li-ll PT3 " 3.40 arm
Pilot Only Fueled 17,0 2,0 0,i 99,9 ....
Pilot F/A- 0.006 5,1 106 15.7 95.9 ....

Pilot F/A - 0.006 Total F/A - 0.0284 7.2 1.0 -0- i00 ....
Sector Burning Simulation

Pilot F/A = 0.004 4_8 115 14,8 95.8 ....

Pilot F/A = 0.004 Total F/A = 0,0284 7,5 7,0 -0- 99,9 ....
Sector Burning Simulation

II-13 PT3 " 4.76*

Pilot Only Fueled Sector Burning 6.9 ................
Simulation, Total F/A - 0.0284

Pilot F/A - 0.005 5.05 ................

11-16 PT3 = 4.76 atm*
Pilot F/A - 0.005 4.2 ...............

Pilot F/A m 0.005: Sector Burning 4.8 ................
Simulation, Total F/A = 0.0284

Note: * For Models 11-13 and ll-16j rig data were not obtait.ed at the approach

condition. The NOx engine data presented above were extrapolated
from CTOL cruise data,
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Table XXVIII. Hot Day Climbout Emlssiens Data, Double Annular C -OE_
Combustors.

Engine Test Conditions: PT3 TT__3 Vre_ Fuel-Air Ratio25.3 aim 825° K 26.5 m/s 0.0225

Ri_ Testing at Reduced Pressures Up to 9.6 aim. Other Conditions Duplicated.

Oxides of Carbon Unburned Comb_tion Smoke

Nitro&on Monoxide Hydrocarbons Efficiency Number
g/kg Fuel g/kg Fuel 8/kg Fuel % SAE No.

Program Goals ............ 99+ ....

CF6-50 Engine 36.0 0.3 0.i 99.9 12

CF6-50 Combustor Rig Data
(At PT3 = 9.53 aim) 32.0 0.3 0.1 99.9 2

Double Annular Combustor Configurations=

II-4 PT3 = 4.76* aim
Pilot F/A - 0.006 to 0.010 24.6 ...............

II-8 PT3 " 4.76 aim*
Pilot F/A - 0.012 37.5 ...............

II-9
At PT3 = 4.76 aim
Pllot F/A - 0.010 28.0 6.0 0.3 99.8 ....
Pilot P/A - 0.006 23.1 3.5 0.2 99.9 ....

At PT3 = 6.76 atm
Pilot P/A = 0.005 23.3 3.5 0.i 99.9 ....

At PT3 " 7.2 aim
Pilot F/A - 0.004 23.9 6.6 1.3 99.8 ....

ZZ-II PT3 " 6.8 atm
Pilot F/A - 0,006 20.6 2.5 0.1 99.9 ....
Pilot F/A = 0,004 20.9 3.7 O.i 99.9 ....

If-13 PT3 = 4.72 atm
Pilot F/A = 0,005 17.9 2.0 0.I 99.9 ....
Pilot P/A = 0,004 16.9 3.2 0.2 99.9 ....
Pilot F/A = 0.003 18.3 5.3 0.2 %9.9 ....

_Iml6 PT3 = 4.76 aim
Main _urner Only Fueled 17.1 6.5 0.I 99.8 _--

Note * For Models II-4 and 11-gs the NOX engine data at cllmbout condition
were extrapolated from rig data obtained at the hot day takeoff
conditions.
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I
Table XXIX. Standard Day Take( ?f Emissions Data, Double Annular CF6-50

Combus_ors.

Engine Test Conditions: PT3 Vre____f29.1 arm 819° K 26.0 m/s 0.0245

....Oxides of Nitrogen Engine Values Obtained by Extrapolating Hot Day
Takeoff Rig Data Unless Otherwise Specified.

....Comb_tlon Efficiency Values are Hot Day Takeoff Rig Data.

Oxides of Combustion -

Nitrogen Efficiency

g/kg Fuel %

Program Goals i0 99+

CF6-50 Engine 35.4 99.9

CF6-50 CombustorRig Data

(At PT3 " 9.53 arm) 32.6 99.9

Double Annular Combustor Confieuratlons:

11-4 PT3 = 4.36 arm
Pilot F/A ffi0.0122 27.8 99.3
Pilot F/A- 0.006 to 0.011 28.0 99.4

ll-8 PT3 = 4.76 arm*
Pilot F/A = O.012 40.3 ....

11-9 _'3 = 4.76 arm
Pilot F/A ffi 0.0100 30.0 99.9
Pilot F/A - 0.008 23.9 99.9
Pilot F/A - 0.006 24.4 99.9
Pilot F/A = 0.005 23.6 99.9

IL=II PT3 = 4..26arm
Pilot P/A - 0.006 21.6 99.9

Pllot F/A - 0.005 21.2 100
Pilot F/A = 0.004 22.2 99.9

Pilot F/A = 0.003 22.6 99.8

Main Burner Only Fueled 25.6 99.8

11-13 _3 " 4.76 arm

=_ Pilot F/A = 0.005 19.9 99.9
Pilot F/A = 0.004 18.6 99.9
Pilot F/A - 0.003 19.3 99.9

| Main Burner Only Fueled 22.7 99.8

11-16

Pilot F/A - 0.005; PT3 = 6.8 atm 17.8 i00
Pilot F/A = 0.005; PT3 = 4.76 etm 17.8 99.9
Pilot F/A = 0.0041PT3 = 4.76 arm 17.7 99.9
Pilot F/A = 0.003; PT3 = 6.8 arm 17.6 100
Pilot F/A = 0.003; FT3 - 4.76 arm 17.6 99.9

Note * For Model 11-8, the NOx engine data at sta dard day takeoff condition
were extrapolated from rig data obtained at the hot day cllmbout
conditions.
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Table XXX. Hot Day Takeoff Emissions Data, Double Annular CF6-50 Combustors.

PT3 TT3 Vref Fuel-Air Ratlo
Enalne Combustor CondlCions: 29.1----arm 858--'TK 29_5 m'--'-'/s 0.0245

Rig Testing at Reduced _ essure Up to 9.6 arm. Other Conditions Duplicated.

Oxides of Carbon Unburned Comb_stlon Smoke

Nitrogen Monoxide Hydrocarbons Efflci_ncy Number

g/kg Fuel g/kg Fuel g/kg Fuel % SAE No.
Program Goals i0 ........ 99+ 15

CF6-50 Engine 44.0 0.2 -0.I 99.9 12

CF6-50 Combustor Rig Data
(At PT3 " 9.53 arm) 41.2 0.4 -0- 99.9 1

Double Annular Combustor Configurations:

II-4 PT3 " 4.76 arm
Pilot F/A- 0.0122 34.2 8.2 5.0 99.3 1
Pilot F/A - 0.006 to 0.011 34.6 8.0 4 6 99.4 2

11-8 PT3 " 4.76 arm*
Pilot F/A - 0.0122 49.7 ............

II_9 PT3 " 4.76 atm
Pilot P/A - 0.0100 37.1 3.5 0.1 99.9 --
Pilot P/A" 0.008 32.0 3.0 0.i 99.9
Pilot F/A - 0.006 30.2 3.8 -0- 99.9 --
Pilot P/A - 0.005 29.2 4.8 0.i 99.9 --

11-11 PT3 = 4.76 arm
Pilot F/A - 0.006 26.-7 2.5 0.2 99.9 --
Pilot F/A - 0.005 26.2 -0- -0- 100 --
Pilot F/A- 0.004 27.4 4.1 0.2 99.9 --
Pilot F/A = 0.003 27.9 6.8 0.2 99.8 --

Main Burner Only Fueled 31.6 7.0 0.2 99.8 --

11-13 PT3 " 4.76 arm
Pilot F/A- 0.005 24.6 2.0 0.5 99.9
P11ot P/A - 0.004 22.93 3.1 0.5 99.9 --
Pilot F/A - 0.003 23.8 4.6 0.2 99.9 M

Main Burner Only Fueled 28.0 5.9 0.3 99.8 -- i
11-16

Pilot P/A, 0.005; PT3 " 6.8 arm 22.0 0.7 0.4 I00 - I
Pilot P/A, 0.005; PT3 " 4.76 arm 22.0 1.3 0.4 99.9 --

Pilot F/A, 0.004| PT3 " 4.76 arm 21.9 1.6 0.3 99.9 0
Pilot F/A. 0.003; PT3 " 6.8 arm 21.8 1.9 0.I 100 1
Pilot F/A, 0.003; PT3 " 4.76 arm 21.8 2.5 0.3 99.9 1

Mote: * For Model II-8, rig data were not obtained at t|ie hot _ay takeoff
conditions. The NO_ engine data presented above were extrapolated
from C_OL crulse date.
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suggest further reductions in NOx levels could be obtalned by moving the 1
inner liner dilution air holes even farther forward. In order to accomplish

this, the inner llner/cowl/dome Joint would need to be redesigned. As is ]

shown In Figure 53, the minimum NOx levels at takeoff operating conditions !
were obtained with about 80 percent of the fuel supplied to the inner dome. I

The NOx reductions obtained in this test series were achieved with no ]
sacrifice in high power combustion efficiency. Generally, st all test con- _
ditlons above idle in this series, the combustion efficiency levels were !

well above 99.0 percent. Thus, at true engine pressure levels, combustion

efficiency levels approaching 99,9 percent would be projected, i

The lowest idle emissions levels were obtained with Configurations II-9,

II-Ii and 11-16, with only the outer annulus fueled, as shown in Table XXVI.

The co_on characteristics of these configurations were a biased dome airflow

split and no outer liner dilution ai= holes to cause quenching of the com-
bustion products. Configurations 11-9 and II-ii had the same outer annulus
swirler airflow (18 percent) and differed only in the location of the inner

liner dilution air holes. Configuration 11-16 had lower outer annulus swirler

airflow (12 percent), which in the Radial/Axial Staged Combustor configurations

produced the lowest idle emissions levels obtained in this program. However,
in the Double Annular Combu_tor eonfigurations_ the levels were higher,

suggesting that high penetration of the inner liner dilution air jets produced

a quenching effect. These trends strongly suggest that Idle emissions might
be further reduced by lengthening the centerbody, thus providing a longer

sheltered region in the outer annulus for low power operation. Configuration

11-16, which provided the lowest NOx emissions level and nearly the lowest
idle emisslons levels in this series, was selected for additional evaluations

which includ,_d ignition testing.

The results of this ignition testing are shown in Figure 54. Compared

to the CF6-50 production engine combustor, the fuel flow rates required for

sea level ignition were higher, especially at low combustor airflow rates, so

altitude- relight testing was not atte.mpted. The results did, however,

suggest that satisfactory rellght characteristics could be obtained with

furthen development. Lengthening the centerbody alone would be expected to

provide a significant improvement.

Typical exit temperature profile characteristics at high power conditions

compared well with those of the CF6-50 production engine combustor. At low

power conditions where only the outer annulus is fueled, the profiles were,
however, mere peaked. Overall, the results suggest that acceptable exit

temperature profile characteristics should be attainable with this design.

The mechanical and cooling characteristics of the Double Annular Combustor

configurations were very satisfactory. Over 86 hours of combustor operation
were accrued in this series and the hardware was still in good condition. As

received, the centerbody cooling flow area was lower than intended, and in

some early tests, high metal temperatures were indicated. Each time, however,

posttest inspection revealed no significant damage. The impingement-cooled

dome flameshield was still in excellent condition and indicates that some

cooling air to this region could be reapportioned to the centerbodv. Through-

out the test series, dome carbon buildup was very light.
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Radial/Axial Staged Comhustor Confisurations - Seven Radial/Axial Staged
Combustor configurations were evaluated. The exhaust omissions goals of this

program were very closely approached with this novel design concept. _*e key

_ pollutant emissions charac£eristics obtained with these configurations-are
presented in Tables XXXlI_ XXX_III,__XXXIV, XXXV, XXXVI and XXXVII.

As is shown In Table XXXII, the CO and HC emissions goals were very nearly

achieved with the first test configurations (Configurations II-6, II-7, II-10).

The HC levels were found-to decrease exponentially with fuel-alr ratio and the

CO levels were found to be re]stlvely insensitive to fuel-alr ratio. One point

where 12 percent CDP bleed air extraction was simulated with Configuration
II-7 resulted in HC and CO emissions indices of 1.5 and 23.7, respectively,

which are by far the lowest levels obtained with any comhustor configuration

tested in the Phase I Program. These low Idle emissions levels were achieved

with 12.7 percent of the combustor airflow apportioned to the pilot stage air

swlrlers. In later configurations, the pilot stage swirler airflow was reduced

to more nearly approach the high power combustion efficieney_____dN0x emissions

goals.

The first decrease in swirler airflow (Configuration II-12) produced idle-

emissions results very much as expected: the HC levels increased very slightly

and virtually no change was obtained in the CO levels. The next decrease in

swirler airflow (Configuraton If-14) resulted.ln increased emissions levels,

especially CO. Analyses suggest that the manner in which the swlrler airflow
was reduced was a greater factor than was the absolute level of reduction.

(Increasing fuel flow in the earlier test configurations an equivalent amount
did not cause as much increase in emissions as did the decrease in airflow and

Configuration II-14 had a weak secondary air swirl strength). Configuration

III-2 had a stronger swirl strength and an airflow level intermediate to those

of Configurations 11-10 and 11-14, but its emissions levels were much higher

suggesting that the chute air turning vanes that were incorporated into this

particular configuration caused severe quenching of the pilot stage combustion

gases. These vanes produced a significant improvement in high power combustion
efficiency, but their impact upon Idle emissions levels must be further
evaluated.

As is shown in Tables XXXV and XXXVI, the first Radlal/Axlal Staged

Combustor configuration (Configuration II-6) also showed very encouraging re-
sults with respect to high power NOx emissions levels. The first test was run-

at moderate conditions (T3 ffi730 ° K, P3 " 4.8 atm) and--the effects of fuel

staging mode were investigated. It was found that the transition from pilot-

only to two-stage burning was very smooth and that both the NOx emissions
levels and combustion efficiency levels were highly sensitive to fueling mode.

Also tried with this first test configuration wss fueling alternate _ain stage

injectors. This type of fuel staging resulted in higher combustion effieien-

cles.- However, the NOx levels were also higher wlth only the alternate in-

Jectors fueled versus all 600 injectors. No metal temperature problems were
encountered and posttest inspection showed no distress. Thereafter, the com-

buster was progressively subjected to more severe operating conditions and

configuration changes. As noted above, idle emissions levels were nearly the

same for Configurations II-6, II-7, II-lO and II-12 but increased with

Conflguratlon II-15. The eomhustor was then z_eonflgured to the Configuration
131
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Table XXXIII. Hot Day Approach Emissions Data, Radial/Axial S_aged CF6-50
Combustors.

Engine Combustor Conditions: RT3 TT3 Vrnl Foal-Air Ratioll,Tatm 6_K 26.$---_/a 0.0142

i Rig Testing at Reduced Pressure Up to 9.6 aim. Other Conditions Duplicated, o

4Oxides of-- Carbon Unburned Combustion Smoke
i, Nitrogen Monoxide Hydrocarbons Efficiency Number

I g/kg Fuel g/k8 Fuel g/kg Fuel % SAg No. _

Program Goals .......... 99+ --

CF6-50 Engine 12.0 - 4.0 0.1 .. 99.9 ° ---5

CP6-50 Combustor Rig Data

(At PT3 = 6.8 aim) 10.7 7.5 0.3 99.8 --

Radial/Axial Combustor Confisurations_

II-6,7 PT3 " 4.76 aim* Alternate
Pilot Only Fueled Secondary 11.7 ..............
Pilot FIA - 0.012 Chute 11.9 -- -...........
Pilot F/A - 0.008 Fueling 7.6 ..............

II-10 PT3 " 4.76 aim
Pilot Only Fueled 13.24 9.1 0.2 99.8 - --
Pilot F/A - 0.007* 5.3 .............
Pllot F/A- 0.005* 3.5 ............

li-12 PT3 " 3.39 aim 13.4 14.5 -0- 99.7 --
Pilot Only Fueled

11-14 - No Data Obtained

II-15 PT3 = 6.80 aim
Pilot Only Fueled 10488 5.8 0.6 99.8 --
Pilot F/A- 0.007 7.22 90.5 66.5 91.2 i

111-2 PT3 " 3.39 aim
Pilot Only Fueled 8.6 3.2 2.1 99.7 2
Pilot F/A - 0.0079 9.0 106 85.7 89.0 --

Note * For Models 11-6, 7 (all data) and II-10 (pilot F/A - 0.005, 0.007), rig
data were not obtained at the hot day approach conditions. _te NOx engine
data presented above were extrapolated from rig CTOLcruise data.
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Table XXXIV. I[ot DRy Cllmbout Emissions _DRtn,.Radlal/Axlal Staged CF6-50

Combus_ors.

PT_3 TT__/3 --Vrel Fuel-Air Ratio

_it_e 'Peat Couditlona: 25,3 arm 825° K 26,5 m/a 0.0225

Rig Teatlng at Reduced Pressure Up to 9.6 arm. Other Conditions DuplJeated.
]

Oxides of Carbon Unburned Combustion Smoke "i

Nitrogen Monoxide Hydrocarbons Efficiency Number

g/kg _uel g/ks Fuel g]kg_]km_t X 8_ No.

Program Goals ............. 99+ --

CF6-50 Engine 36.0 0.3 O.I .... _9 12

CF6-50 Combusto_.Rig Data

(At PT3 = 9.53 arm) 32.0 0.3 0.i 99.9 2

Radlal/Axlal Combuator Configurations:

11-6,7 PT3 _ 6.8 arm
Pilot Only Fueled 28 6.5 -0- 99.8 --
Pilot F/A = 0.006 14.55 78 5.7 97.6 --
Pilot F/A = 0.005 12.3 87.5 13 96.6 --

il-lO

Pilot _/A = 0.007_ PT3 = 6.8 atm 18.0 36.5 2.0 98.9 --

Pilot F/A = 0.007, PT3 = 4.76 arm 18.0 49.0 4.5 98.3 --
Pilot F/A = 0.005. PT3 = 6.8 arm ii.i 59.0 15.0 97.1 --
Pilot F/A = 0.005, PT3 = 4.76 arm ll.1 69.0 25.0 95.9 --

II-12 PT3 = 6.8 atm
Pilot F/A = 0.007 19.6 29.0 1.4 99.2 --
Pilot F/A = O.OOS 12.2 46.0 -- 4.4 98.5-- --

11-14 PT3 : 6.8 arm
Pilot F/A = 0.005 16.5 33.3 3.0 98.9 --
Pilot F/A = 0.003 8._.......69.0 -- 42.5 94.1 --

11-15 PT_ = 9.53 arm
PIIot'F/A = 0,006 16.15 19.0 1.5 99.4 1
Pilot F/A = 0.005 12.6 28.3 2.9 99.1 1
Pilot F/A = 0.004 11.75 37.5 4.0 98.7 I

III-3 PT3 = 6.8 arm
Alternate Secondary Chutes Fueled

Pilot F/A - 0.008 28.9 25.6 1.2 99.3 1

All Secondary Chutes Fueled
Pilot F/A = 0.008 30.1 9.F 0.3 99.7 1

Pilot F/A _ 0.006 24.24 9.7 0.3 99.7 1
Pilot F/A _ 0.005 18.87 15.0 0.5 99.6 --

Vre f increased 15% at 0.005 19.56 16.0 0.6 99.6 -"
Pilot F/A - 0.004 14.88 20.0 I.I 99.4 1
Pilot F/A _ 0.003 11.89 33.8 5.2 98.7 1

Vre f increased 15% at 0.003 11.58 48.1 9.9 97.9 --
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Table XXX_. Standard Day Takeoff Emissions Dataj Radial/Axial Staged CF6-50
Combustors.

PT._3 TT3 Vre_.__f Fuel-Air Ratio
Engine Combustor Conditio_st 29.1 atm 81_ K 25.0 m/s 0,0245

.... Oxides of Nitrogen Engine Values Obtained by Extrapolating Hot Day
Takeoff R/E Data to Standard Day Conditions, Unless Noted Otherwise

.... Combustion Efficieucv Values are Hot Day Takeoff Rig Data.

Oxides of - Combustion
Nitrogen Efficiency

(_'! g/kg Fuel %

Program Goa%a i0 99+

CP6-50 Engine 35_4 99.9

CF6-50 Combustor Pig Data

(At PT3 " 9.53 atm) 32.6 99.9

Radlal/Axlal Combustor Configurations: ...............................

II-6,7 PT3 " 6.8 arm*
Pilot Only Fueled 29,0 ....
Pilot F/A = 0.006 24.1 ....
Pilot.E/A - 0.005 18,2 --_

II-i0 PT3 " 5.8 atm*
Pilot F/A- 0.007 19,66 ....
Pilot F/A - 0.0054 14.6 ....
Pilot F/A - 0.005 12,95 ....

II-12 PT3 " 4,76 arm
Pilot F/A- 0.00_ 21.28 99,4
Pllot F/A- 0.006 16.58 99.2
Pilot F/A - 0.005 13.35 98.9

: Pilot F/A - 0.004 11.57 98.7

II-14 PT3 " 4.65 arm
Pilot F/A - 0.0105 28.08 99.5

i Pllot F/A - 0.005 16,91 99,1
Pilot F/A - 0.004 12.88 98,3
Pllot F/A - 0_003 i0,i 94.8
Pilot F/e = 0.0019 8+5 90.9

II-15

Pilot F/A- 0.006, PT3 " 9.53 arm 22.0 99,6
Pilot F/A = 0.006, FT3 = 4.76 elm 18.37 99,5
Pilot F/A - 0.006, PT3 " 3.06 etm 19.58 98.8
Pilot F/A • 0.004, PT3 " 9.53 arm 13.45 99.3
Pilot F/A" 0.004, PT3 " 4.76 arm 12,95 97.1
Pilot F/A - 0.004. PT3 " 3,06 atm 12.82 96,4
Pilot F/A - 0.003, PT3 " 9.53 arm 10.84 98,4

i III-2 PT3 = 4.76 arm
Pilot F/A " 0.005 16,75 99.8

I Pilot F/A - 0.004
14.40 99.7

_. Pilot F/A- 0.003 12.95 99,5

t Note * For Models 1I-6,7 _md II-i0, the EOx engine data at standard day

takeoff conditions were extrapolated-from-rig data obtained at the
hot day cllmbout condJr_,-_.
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Table XXXVl. Hot Day Takeoff Emissions Data, Radial/Axial-S_aged CF6-50

Combustors.

PT3 TT3 Vref Fuel-Air Ratio
_ine Combustor Conditions: 29.1----arm 85-_ K 26.5---_/s 0.0245

Rig Testing at Reduced Pressure Up to 9.6 atm. Other Conditions Duplicated.

Oxides of Carbon Unburned Combustion Smoke i

Nitrogen Monoxide Hydrocarbons Efficiency Number _!
g/kg Fuel g/k8 Fuel g/kg Fuel % SAE No.

Program Goals i0 ........ 99+ 15 j

CF6-50 Engine 44.0 - __-0_2_ O.l 99.9 12 i

CF6-50 Combustor Rig Data

(At PT3" 9.53 arm) 41.2 0.4 -0- 99.9 1 ..............................

Radial/Axlal Combustor Confi_uratlons:

II-6,7" FT3 m 6.8 arm
Pilot Only Fueled 35,9 ....... _.....
Pilot F/A = 0,006 29.8 .............
Pilot F/A = 0,005 22.5 .............

ll-10* PT3 " 6.8 arm
Pilot F/A = 0,007 24,3 ..............
Pllot F/A = 0.0054 18,0 ..............
Pilot F/A - 0,005 16,0 ..............

11-12 PT3 " 4.76 arm
Pllot F/A - 0,007 26.3 25,5 0,5 99.4 --
Pilot F/A - 0,006 20.5 30 0,95 99.2 --
Pilot F/A = 0,005 16.5 39.7 2.1 98.9 --
Pilot F/A ffi0.004 14.3 52.5 0.8 98.7

II-14 PT3 " 4.65 atm
Pilot F/A m 0.0105 34.7 9.8 2.6 99,5 --
_ilot F/A = 0.005 20.9 23,5 3.3 99.1 --
Pilot F/A = 0.004 15._ 37 7.6 98.3 --
Pilot F/A - 0.003 12.45 57 38.6 94.8 --
Pilot F/A " 0.0019 10.5 65.5 75.4 90,9 --

II-15

Pilot F/A " 0.006# PT3 _ 9.53 arm 13.4 37.7 7.7 98,4 2

Pilot F/A = 0.004. FT3 : 9.53 arm 16.62 19.5 1.9 99.3 1
Pilot F/A - 0.004, PT3 4,76 arm 16.0 46.5 i0.0 97.1 1
Pilot F/A ffi0,004, PT3 " 3.06 arm 15,85 55,8 22.5 96.4 --
Pilot F/A m 0.006. PT3 " 9.53 atm 27.2 9.0 1.8 99.6 2
Pilot F/A = 0,006, PT3 = 4.76 arm 22.7 20.2 0.2 99.5 2
Pilot F/A = 0,006, PT3 " 3.06 arm 24.2 37.0 3.4 98,8 ]

111-2 PT3 " 4.76 arm
Pilot F/A - 0.005 16.0 16.7 1.4 99.5 --
Pilot F/A - 0.004 17.8 11.4 0.6 99.7 --
Pilot F/A m 0.005 20.7 6,6 0.3 99.8 2

Notel * For MOdels [I-6_7 and II-lO_ rls data were not obtained at tilehot day
takeoff conditions, The NOx ellglne data presented above were extrapolated
from rlg climbout data,
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Table XXXVI_. Standard Day Cruise Emissions Data, Radial/Axial Staged CF6-50
Combustors.

PT_.__3 TT__33 Vref Fuel-Air RatioEn_ine Test Conditions:
14.4 atm 733" K 24.4 m/s 0.0210

Rlg Testing at Reduced Pressure Up to 9.6 arm. Other Conditions Duplicated.

Oxides of Carbon Unburned Combustion Smoke

Nitrogen Monoxide Hydrocarbons Efficiency Number
g/kg Fuel g/_ g/kg Fuel X SAE No.

Program Goals .... 99+ --

0P6-50 Combustor Rig Data

(At PT3 " 9.53 arm) 17.6 0.9 0.3 99.9 7

Radial/Axlal Combustor Confi_urations_

II-6,7 PT3 = 4.76 arm
Pilot Only Fueled 14.6 6.9 -0- 99,8 2-

IAlternate Secondary Chutes Fueled
Pilot F/A = 0.016 14.6 41.0 7.4 98.3 1

Pilot F/A - 0.012 18.17 44.3 6.4 98.4 0
Pilot F/A- 0.008 13.14 65_5 11.5 97.3 0

11-10 PT3 " 4.76 atm
Pilot F/A - 0.007 8.09 78,8 34 94.8
Pilot F/A= 0.005 3.84 98 128 84.9 --

11-12 PT3 = 3.39 arm*
Pilot Only Fueled 12.7 .............

II-14 PT3 = 6.8 atm#
Pilot F/A - 0.005 7.57 .............
Pilot F/A = 0.003 3.46 ..............

II-15 PT3 " 9.53 arm
Alternate Secondary Chutes Fueled

Pilot P/A - 0.007 13.06 31 1.5 99.1 4

All Secondary Chutes Fueled
Pilot F/A = 0.0057 8.06 72,3- 14.3 96.9 3
Pilot F/A - 0.0038 3.97 95 78.1 90,0 2

III-2 PT3 m 4.76 arm
Pilot Only Fueled 12.2 6.1 0.2 99.8 16
Alternate Secondary Chutes Fueled

Pilot F/A- 0_014 12.2 18.6 1.1 99,4 --

Pilot P/A - 0.010 15.23 27.7 1,8 99.2 --
Pilot F/A - 0.006 14.04 51.1 6.4 98,2 --

Notes * For Model 11-12, rlg data were not obtained at the CTOL cruise

condition. The NOx engine data presented above were extrapolated
from rig hot day approach data.

# For Model II-14 rig data were not obtained at the CTOL cruise

condition. The NOx engine data presented above were extrapolated
from rig hot day climbout data.
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4
11-12 airflow splits, was designated Configuration 11-15 and tested over a !

broad range of inlet conditions and fueling modes. As Is shown in Figure 55, _
the NO x levels wore essentially independent of overall fuel-alr ratio but highly

dependent upon pilot stage fuel-air ratlo. Combustion efficiency levels were i

also highly dependent upon overall fuel-air ratio, as is shown in Figure 56.

The measured combustion efficiency values of the Radial/Axlal Staged Combustor

configurations were extrapolated to true engine operating conditions using the !I

relationships shown in Figure 56. I

Figures 57 and 58 show the effect of pilot-to-total fuel flow split at the

hot day takeoff operating conditions for each of the configurations tested.

For any common fuel flow split, the combustion efficiency levels improved when

the pilot swlrler airflow was decreased (Configurations 11-12, 11-14 and 11-15).
The combination of reduced swlrler airflow and the addition of chute turning

vanes (Configuration 111-2) provided a significant improvement in combustion

efficiency. The NOx emission levels of all configurations also showed a strong
dependency on fuel flow split, but configuration effects were less apparent.

The lowest levels were obtained with Configurations 11-12, II-14 and 11-15 with

low pilot £uel flows. Configuration 111-2 produced slgnlfieantly h_gher NOx

emissions levels at these low pilot fuel flows, showing that there are trade

offs between combustion efficiency and NO x emission levels which complicate
any direct comparison of configurations. Figure 59 is a cross plot of Figures

57 and 58 showing these trade offa. Except for Configuration 111-2, the data

fall into a fairly tight band. Configurations 11-6, 11-7 and 11-14 tend to
define the lowest performance levels of this band; II-10 tends to be inter-

mediate; and 11-12 and 11-15 tend to define the best performance levels. For

an extrapolated combustion efficiency level of 99.8 percent, NOx emissions

levels ranged from about 13 to 20. The data suggest that had the pilot fuel

flow epllt been further reduced on each configuration to the point where the

objective NOx emission index was obtained, the extrapolated combustion
efficiency levels would have ranged from about 98.8 to 99.7 percent.

Configuration II-12 was rebuilt since it produced, overall, the lowest

emissions levels and was retestod as Configuration 11-15. The first part of

this test was a sea level ignition test, The measured lean blowout fuel flow

rates were virtually the same as those of the CF6-50 production engine com-

bustor at all airflow rates. At the highest airflow rated the full propagation

_- fuel flow rate was also virtually the same. At lower airflow rates, higher fuel
flow rates were required for full propagation. These results were highly

encouraging and suggest that, as Is, the comhustor would probably meet most of

the CF6-50 engine altitude relight requirements. Altitude rellght testing
was planned, but abandoned when it was found that the electrical ignitors were

faulty. They failed to fire when wet with fuel.

The typical exit temperature profile characteristics at high power condi-

tlons were very flat and the peak profiles tended to be double lobed. One good

feature of this design approach was that profiles were relatively insensitive

to operating mode. Overall, the results suggest that acceptable exit tempera-

ture profile characteristics can be achieved with this design approach.
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The isothermal pressure loss levels were close to those of the produc- ]

tlon engine combustor, as intended. All of the configurations, however, had I
three to four times as much heat addition loss as the production engine tom- !
buster, since at high power conditions the major portion of the fuel was burned i
in high velocity regions. Augmenter designers have, of course, always recog-

nlzed this characteristic, but main combustor designers have not generally ]
needed to be concerned with It. 1

The mechanical and cooling characteristics of the Radlal/Axlal Staged
Combustor configurations were very satisfactory. Over 115 hours of oombustor

operation were accrued in this series and the hardware was still in good I
condition, especially in the main stage flameholder and oute= liner regions

which were of concern in the design phase. Some distress in the aft cooling

_.: slot overhangs of the inner liner indicated tha_ for long term durability,

additional and/or more effective cooling in this region..may be required. As
in the case of the Double Annular Combustor, the pilot stage dome hardware

was in excellent condition, and some reductions in dome flameshield impinge-

ment cooling airflows may be possible for reapportionment to the aft inner

liner. Light carbon-accumulatlon on the pilot stage dome and its fuel injectors

was observed. But it is anticipated that by applying simple design features
which have been developed in other current programs, this problem could be
readily eliminated.

ASSESSMENTS OF RESI_,TS

NO_ Emissions Comparisons

The NOx emissions characteristics of each of the basic design approaches

investigated in this program are compared in Figure 60. At low fuel-air

ratios, each of the design approaches produced significant reductions in NOx
emissions levels when compared to those of the production CF6-50 engine tom-

buster. However, at the hot day takeoff operating conditions, the Double

Annular and Radlal/Axial Staged Combustor design approaches were found to be

the most promising. A key ingredient of all of the designs was lean combustion

regions (on a bulk basis) and advanced fuel-alr mixing devices. The failure to

achieve any significant reduction in NO x emissions levels with the Lean Dome

Single Annular approach is an indication that the combustion processes are very

rapid compared to fuel-air mixing processes. With this design approach, much of
the combustion must have occurred In near-stoichlometrlc regions. This result

was not totally unexpected since the comhustor had only 30 direct fuel injection

points (no premixlng). All of the other design approaches investigated,

therefore, incorporated increased numbers of fuel injection points and, except

for the Lean Dome Double Annular Combustor design approach, some degree of pre-
mixing. The NASA Swlrl-Can-Modular Combustors incorporated both of these in-

gredients. The failure to achieve any sizeable NOx emissions reductions with

this combustor design approach is attributed to a combination of the following
factors:

i • Relatively coarse fuel atcmi_ation.• Relatively low swlrler airflow quantities.
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• Relatively slow mixing between the swlrl-c_n flow and the other

dome airflow (around/through the flameholder_).

Some improvement was obtained with the last two eonfiRuratlons tested (Configura-
tlons 111-1 and 1-16) by grossly adjusting these parameters.

The first Double Annular Combustor configuration (Configuration 11-4) had

two of the ingredients thought to be important, good fuel atomization and high

swirler airflows. However, at takeoff, its NOx levels were only moderately

reduce& This finding was attributed to relatively slow mixing of the primary
and secondary swlrler airflows, which was confirmed by flow visualization

tests. In this design, fuel injector/primary swlrler devices developed for

a smaller _nglne were utilized in conjunction with new, higher flow, secondary

_' swlrlers. Good fuel atomization was still obtained, hut mixing was compromised.

Ideally, the primary swlrler would also have been scaled up to the CF6-50

combustor-aize flows, but cost, timing and dome size limitations were overriding

factors in the selection. The later tests showed, however, that at least for

the outer annulus, the selection was well chosen. The second test configuration
(Configuration 11-8) incorporated reduced secondary swlrler airflow (to about

the CF6-50 production engine combustor level) which visually provided improved

mixing and resulting in a swirl cup fuel-air ratio at takeoff operating con-

ditions of 0.066. Its NOx emissions level was about 25 percent higher than

that of the CF6-50 production engine combustor. Much-lmproved idle emissions

levels were, however, obtained. The approach followed in the next configurations

was, therefore_ to bias the dome alrflows- Steady progress was made thereafter

by incorporating ,,ore rapid inner dome fuel-air mixing features. Based on these

results, the next step appears to be to improve the effectiveness and/or airflow
level of the inner annulus air swirlers and/or move the inner liner air dilution

holes closer to the dome. Dilution air introduction into the inner annulus

from the centerbody m_ght also be effective.

As anticipated, the Radlal/Axial Staged Combustor design-approach

produced the lowest NOx emissions levels. The key features of this design
approach that resulted in low NOx levels were its very lean main stage and the

use of fuel-air pre_[xing in the main stage. Even though the fuel split was

highly biased to the main stage at takeoff and the pilot was also lean, the

major portions of the NOx emissions were generated in the pilot stage. This

effect was so strong t_at NOx emlss_ons levels were more dependent upon fuel

flow split than any of the configuration changes which were made. Combustion

efficiency levels were also very senslti_e to fuel flow split, but configura-

tion effects were observed, particularly with the last configuration (Configura-

tion 111-2). 1_e results suggest that further significant progress may he
obtained by a combination of:

• Airflow split adjustments.

• .Main stage length adjustments.

s Added main stage air introduction features (such as turning vanes).

• Improved main stage fuel Injection techniques.
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hlle Emissions Comparisons

Figure 61 compares the Idle emissions characteristics of each of the major

design approaches investigated in this program. Fuel staging at Idle was a
significant factor in all of the design approaches. The 11C emissions goal

was achieved and the CO-goal was approached with the CF6-50 production engine

combustor, using sector burning. Significant reductions, which correlated well

with prevl_us engine test experience, were also achieved with compressor bleed
air.extraction as shown in Figure 62. Therefore, it appears that the idle

emissions goals might be achieved with the CF6-50 production engine combustor,

using some combination of: (i) sector burning; (2) compressor bleed air extrac-

tion; and, (3) further improved fuel atomization. To-some extent, these 1

approaches are applicable to any other comhustor.

The lowest idle emissions levels were achieved with the Radlal/Axial

Staged Comhustor, %hieh was also anticipated since the pilot stage was designed

specifically for Idle operation. The HC emissions goal was achieved, with

margin, and the CO goal closely approached with the first test configuration.

With compressor bleed air extraction, the CO goal was more nearly approached.
It is anticipated that further progress could be made by pilot air swirler

and/or dome cooling air adjustments.

The Double Annular Combustor, wJth outer annulus burning, provided the

second lowest idleemisslons levels in this program. These reductions are

attributed to two features which are co,_non to the Radial/Axlal Combustor:

fuel staging and improved fuel atomization. The difference in Idle emissions
levels of the two eomhustors is attributed to the degree to which the pilot

stage is isolated from the main stage. The data strongly suggest that further

significant zeductions in the idle emissions levels of the Double Annular
Combustor could be obtained by lengthening the eenterbody (perhaps from the

current one dome height _o two dome heights).

Th_ failure to achieve significant reductions in idle e_tlssions levels
with the NASA Swirl Can-Modular Combustors is attributed primarily to its

relatively coarse fuel atomization. A second important feature is its high

dome airflows, with no hlaslng or isolation between dome annull.

Intermediate Power Considerations

The primary focus in this program was upon NOx emissions levels at the

hot day takeoff conditions and HC and CO emissions levels at the standard day

idle conditions. However, significant NOx emissions level reductions, with

high combustion efficiency levels, were obtained with several of the NASA
Swirl-Can-Modular Combustor configurations at the intermediate power con-
ditions. The results show that fuel staging was a key needed ingredient in

each design appcoach. Nith the Double Annular and Radial/Axial Staged Com-

bustor design approaches, obtaining acceptable combustion efficiency performance
at these intermediate power operating conditions generally required the use of

optimum fuel flow splits to the two combustor stages. With these combustor

design approaches, therefo*e, further development efforts must be addressed to
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determining where and how to schedule these changes in fuel_ng mode. The corn-

buster design must be integrated with the fuel dellv,_ry and engine control

designs. This design problem Is not really new. M_In combustor designers
have long dealt with dual-orifice fuel nozzles and the associated relative

size/eut-ln point considerations. The production CF6-50 engine comhustor has

three distinct fueling modes: (i) alternate nozzles - primary only; (2) alter-

nate nozzles - primary and secondary; and, (3) all nozzles - primary and secon-
dary. Augmenter designers have similarly incorporated three or more fueling

modes including spatial staging; i.e., local, fill and fan air earbaretion, i

Engine fuel delivery and control designers have then scheduled and integrated i

these designs to respond to throttle setting. Low emissions main combustors

must now utilize and extend these technologies. The Radial/Axlal Staged

Combustor design approach perhaps presents the greatest challenge in this

respect since emissions levels and combustion efficiency levels have been found

to be highly sensittve-.to-both inlet-condltlons and fueling mode.

Advanced-commercial CTOL aircraft engines, such as the CF6-50 engine, are

designed to have very low specific fuel consumption rates at the design cruise

condition (generally 10.6 km, 0.85 Mp). To achieve low specific fuel consump-
tion rates, the combustion efficiency levels must be very high (at least 99.8

percent or possibly 99.9 percent). From a fuel utilization standpoint slightly

lowar combustion efficiency levels (98.0 to 99.0 percent) could probably be
tolerated in the Idle, takeoff and approach modes. _ueh lower combustion

efficiency levels would, however, make it virtually impossible to meet the

EPA-defined emissions standards for HC and CO emissions, particularly with
respect to CO emissions. Therefore, the fueling mode must be selected to

obtain very high combustion efficiency levels not only at cruise, but through-
out the EPA-deflned landing and takeoff mission cycle.

The highest Radlal/Axlal Staged Combustor efficiency levels were obtained

with the last configuration tested (Configuration 111-2). The effects of fuel
flow split at high power were investigated in detail. At the CF6-50 cruise

condition (10.6 km, 0.85 Mp, standard day), combustion efficiency levels
increased with increasing pilot fuel flow and/or circumferential staging of

the main fuel flow. Sixty percent or more of the fuel in the pilot was

required to reach the 99.8 percent combustion ef£1cieney level. With all of

the fuel introduced into the pilot, a combustion efficiency level of over 99.9

percent was obtained. The NOx emissions levels peaked with about 40 pere<nt

of the fuel in the pilot. With all of the fuel in the pilot, a NOx emissions

level about 35 percent lower than that of the production CF6-50 engine tom-

buster resulted. Thus, both from a combustion efficiency and NOx emissions

standpoint, the best way to operate this eombustor at CTOL cruise appears, at
this time, to he _rlth only the pilot stage fueled.

Th_ combustion efficiency levels of the Double Annular Combustors were

found to be far less sensltive to inlet conditions and fuel split, thus fuel

scheduling could be based upon-exhaust emissions considerations only.

Similar studies, but in less detail, have been made at the approach (30

percent power) and elimbout (85 percent power) conditions. At approach, the

inlet pressure level is about the same as at cruise, but the inlet temperature
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is lm,'er (661 versus 731 ° E) and the fuel-n]r rnrto Is much h_wer (O.014 ver._,s
0.021). In order to meet the CO emtsstotu_ ._t,.md,,u'ds. pilot-only opt, rat ton
seems co be needed at this engine operating mode with both the Radial/AxiaL

Staged and Double Annular Combustors. At climbout, the eombustor Inlet pres-
sure, inlet temperature, and fuel-air ratio are much closer to the takeoff
conditions than to the cruise conditions. Thus, to meet the NOx emissions

standards, two-stage operation with the fuel highly biased to the main stage

seems to be the optimum mode. If used in this way, the overall flight

operational mode with these two staged combustor design approaches would be

to idle and taxi out on pilot only, turn on the maln. stage for takeoff and

ellmbout, then shut it down for the remainder of the flight (cruise, approach,

taxi in and idle), In this scheme, the main stage is used much the same as

an afterburner is used in military aircraft except that the main stage is

{ never relighted in flight.

DEVELOPMENT STATUS OF BEST DESIGN APPROACHES

Pollutant Emissions Characteristics Status

The pollutant emissions goals of the basic.Phase 1 2rogram were most closely

approached with the Radlal/Axlal Staged and Double Annular Combustors. Table

XXXVIII compares the emissions status of the best configurations to the program

goals and the CF6-50 production engine combustor. In the case of the Radial/

Axial Staged Combustor design, the NOx emissions levels have been defined a=

the fuel flow split.which provides an extrapolated combustion efficiency level

of 99.85 percent. NOx emissions levels at both the hot and standard day takeofl

conditions are shown since: (I) the program goals were specified at the hot

day condition; (2) the EPA-deflned regulations are specified at the standard

day condition; and, (3) the change in NOx emissions levels at the two condi-

tions varies with combustors. The CP6-50 engine operating conditions for

the two ambient temperature levels are compared in Table XXXIX.

At standard day operating conditions, the combustor inlet temperature is

significatttly lower, Reference velocity and fuel-air ratio are also somewhat

lower, In the case of the Radlal/Axlal Staged Combustor, this lower fuel-elf

ratio tends to offset the NO x emissions level reductions associated with the

lower inlet air temperature, since the pilot stage fuel flow percentage must

be increased to maintain the same combustion efficiency. At a constant fuel-

air ratio, the NOx emissions levels would nominally be 19 percent lower at the

standard day conditions. This degree of reduction is projected for the Double
Annular Combuetor since the effect of fuel-air ratio on its NOx emissions levels

is very slight. The NOx emissions levels of the CF6-50 production engine tom-

buster are expected to be only 16 percent lower at the standard day condltlons,
since the NOx level increases with decreasing fuel-air ratio. Thus, at the hot

day operating conditions, the Rat el/Axlal Staged Combustor is far superior, but

the margin between it and the Double Annular Combustor diminishes somewhat at

the standard day conditions.
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Overall Performance Status

The overall performance status of the two combustor design approaches is

assessed in Table XL with respect to the degree of further development requlre& q

for engine installation. In most respects_ both comhustors are classified •s |

"essentially already meets requirements" or "expected to meet requirements with

normal development."

Exit temperature distribution of both combustors is cl•sslfled as "slgnlfi-

cant further development needed to meet requirements," although the-test results _i

were quite encouraging. In previous combustor developments, small changes to !

improve other aspects of performance, such as altitude rellght and liner llfe,

often have made large effects on exit temperature profile and pattern factor

characteristics. Traditionally, exit tem-erature profiles have then been

adjusted by •lterlng the axial and circumferential locations of the dilution
air holes. This tool is not available in these low emissions combustors, so

adjustments to the exit temperatures are expected to be more difficult. Further,

since gross changes in fuel staging are mandatory, the exit profiles must be

considered at each oper•tlng mode.

Combustion efficiency •t part-power and cruise of the Radial/Axial

Staged Combustor is classified •s "signlflc•nt further development needed to

meet requirements" for reasons discussed in the preceding sections of this i
chapter.

Flashback in the Radial/Axial Staged Combustor is also classified as !

"significant further development needed to meet requirements" for re•sons

commo_ to any system incorporating fuel-alr premlxlng. No problems were

encountered in this program, hut testing was: (i) limited to 9.5 •tm;

and, (2) no severe tr•nslents were attempted (such as an engine throttle chop).

Much further development testing is required to prove the reliability of this

aspect of the combustor design.

Overall Appllc•tions Status

T•ble_3_l sua_•rlzes the key applications conslder•tlons associated with

the Radial/Axial Staged and Double Annular Combustors. Their impacts on an ........

in_ended engine application appear greatest in three areas:

• Modified turbine operating/performance capabilities may be required

for application of either eombustor, p•rtlcularly the Double Annular

Combustor. It is probable that the exit temperature profiles w_ll

deteriorate somewhat at one or more engine operating conditions

because of the fuel staging that _s required.

s The fuel delivery system w_!l be more complex in a CF6-50 engine

application:

- 60 or 90 fuel injectors, flow dividers and pigtails are

required versus 30 in the current configuration.
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Table XL. Summary of Overall Performance Status.

Double Annular Radlal/Axial Staged
Status (I) Status (1)

Key Performance-Aspect 1 2 3 1 2 3

Other Emissions

Smoke x x

_lite Smoke (subldle) x x

Ignition
Ground Start x x

Altitude Relight x x

Pressure Drop x x

Combustion Efficiency
at idle x x

at SLS high power x x

at part-power (approach) x x
at cruise modes x x

Exit Temperature Distribution
Profile Factor x x

Pattern Factor x x

Flashback x x

Carboning x x

Liner Life x (2) x (2)

(i) Status Classification

Status I: Essentially already meets requirements

Status 2 : Expected to meet requirements with normal

development

Status 3: Significant further development needed to

meet requlremg_D/9
,p

ii (2) At least equivalent to current production combustor I
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7
Possibly two fuel manifolds are required versus one in the

current configuration.

Two axial fuel injection locations are required, in the case
of the Radlal/Axial Staged Combustor, versus one in the

current configuration.

• The fuel control system may be more complex.(schedullng of fuel

flow split is required, in addition to overall flow rate).

Limited studies have indicated that satisfactory means of handling these appli-

cations aspects can be attained, hut significant design and development efforts
will be involved.

MISCELLANEOUS DATA CORRELATIONS

Idle Emissions Correlations

In this program, 34 combustor configurations were tested. A broad range

of combustor airflow splits was encompassed wlth-these configurations. In

addition, three major types of fuel injection methods were employed (conven-
tional pressure atomizers, air blast devices and NASA Swlrl-Can-Modular I

devices). Many of the configurations were tested with different fueling modes _i
at idl_ (outer annulus, inner annulus, both annuli and alternate or sector

burning). A total of.69 data points were obtained at the nominal idle test

condition (P3 = 3.39 aim, T3 = 454 ° K, VR = 19.5 m/s, f = 0,014). The CO,

HC and NOx emissions results are compared in Figures 63 and 64. These various

configuratlon/fuellng mode changes resulted in CO emissions indices ranging

from about 25 to 150. The HC and NOx indices seem to be uniquely related to
the CO index; i_e., any configurational change which reduced CO emission

levels, simultaneously reduced HC levels, but increased NOx levels. The corre-

lations suggest that a configuration which achieves the CO emission goal of

20 g/kg fuel would have an HC index _f about 0.4 (an order of magnitude below

the goal) and a NOx index of about 3.7 at idle (50 percent increase from the

CF6-50 production engine combustor). In the CF6-50 production, engine com-

bustor the quantity of NOx emissions generated in the Idle operating mode is
a small fraction of NOx emissions summed over the EPA-prescribed takeoff and

landing cycle. However, if the takeoff NOx emissions goal is achieved, the idle

NOx emissions will become a significant portion of the total-NOx emissions

produced on the overall mission cycle.

Pressure Loss - NOx Relationship

All combustors investigated in this program were designed to have about

the same pressure loss as the CF6-50 production engine combustor. At one time

in the program, it appeared that the NOx emissions levels of the NASA Swlrl-Can-

Modular Combustors might be related to pressure drop, so two configurations
with increased pressure loss were evaluated (Configurations 1-10 and I-Ii).

No improvement was noted, Late in the program, the two AST configurations

(III-i and 111-2) were designed to have lower pressure drop and again no direct
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effect was observed. The overall conclusion is that isothermal pressure drop

alone is not a strong influence on emissions characteristics. However, all of
the configurations which produced significant NOx reductions had increased heat

addition pressure loss. This was particularly noticeable in the testa of Double

Annular Combustor configurations. NO x emissions reductions ware achieved when
the dome airflow was increased and the airflow was biased to the inner annulus.

Both of these features increased dome velocity and, hence, heat addition pressure

loss. The Radial/Axlal Staged Combustor was, of course, always designed to
have high velocities in _he main stage heat addition region. These trends

suggest low NOx emissions combustor designs must incorporate high velocity in
the heat addition regions (to reduce residence time) in addition to lean
mixtures. "..................

J
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INTROI}tlCTION

'|2_e efforts of tile basic Phase I Program were concerned with the reduc-
tions of the pollutant emissions levels uf high pressure ratio CTOL engines

at engine opcratlsg conditions Lha_ primarily occur in and around airports:

taxi and idle, takeoff, cllmbout and approach. In-thls addendum to the basic

program, combustor deslgn and development efforts were directed toward

reducing the--NOx emissions levels of combustors at &ST engine cruise operating
conditions. This program addendum consisted of three tasks:

Task i - AST Screening Tests

Task 2 - &ST Cruise Deslgns

Task 3 - AST Englne-Concept Designs

The screening tests consisted of selecting several of the most promising
Program Element I and II combustor configurations of the basle program and

evaluating them at a selected set of combustor operating conditions that would

nominally be associated with an &ST engine at supersonic operating conditions.
Based on the measured NO x emissions data, two modified Element I and two

modified Element II conflgur_.ions were then to be defined in Task 2. One of

each design type was then to be selected, fabricated and tested as a part of

Took 2. Task 3 consisted of selecting a realistic &ST engine cycle and

defining two eombustor concept designs sized for this selected engine cycle,

utilizing the best of the NOx emissions reduction technology developed in the
program.

2he following are the combustor operating condltlon$, pollutant emissions

levels and combustor performance levels specified for these AST Addendum design

and development efforts:

AST Cruise Operatln_ Conditions

PT3 6.8 arm

TT 3 833 ° K

TT3.9 1589 a K

f3.9 0.023

/a_TCruise EmJsslons Levels

i NOx 5 g/kg FuelHC 1 g/kg Fuel

i CO 5 g/kg Fuel

Smoke <_ 15 (SAE Smoke Nutnber)

! 62
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AST Cruise Performance Levels

qo _ 99.8%

APT/PT 3 £ 6.0%

Pattern Factor < 0.25

TASK 1 - AST SCREENING TESTS

Thirteen of the most promising Element I and Element II combustor test

configurations of the basic program were selected and evaluated at the defined

i set of AST operating conditions. These AST Addendum evaluations were conducted--as piggybacked tests to the basic Phase I Program tests. The 13 selected

configurations are identified in Table XLII. Four Program Element I and
nine Program Element II configurations were selected for these tests.. The

selection of Program Element I configurations was somewhat limited because
some of these NASA Swirl-Can-Modular CF6-50 Combustors had excessive flame

stabilizer metal temperatures and, therefore, could not be operated at the

AST operating condition. The Element I configurations consisted o£ 3

90-swirl-can configurations and 1 72-swirl-can configuration. The Element

II configurations included one Lean Dome Single Annular, four Double Annular

arieL-fourRadlal/Axlal Staged Combustor configurations.

Summaries of the data obtained in the tests of these 13 configurations
i are presented in Table XLIII. Since these combustors were sized for the

CF6-50 engine and, therefore, had a design reference velocity of 26.5 m/s,

the AST cruise evaluations were run t or near this design reference velocity.

However, AST engine comb,,stors are more typically sized for reference

velocities of approximately 32 m/s. _lerefore, Table XLIII also includes

emissions and performance values that have been corrected to the-32 m/s

reference velocity. As is shown in this summary of results, the Double Annular

andthe Radial/Axial Staged Combustor configurations #rovided the lowest NO x
emissions levels of the configurations that were evaluated.

With the Program Element I NASA-Swlrl-Can-Modulmr Combustor configura-

tions, the NOx levels varied between 14.6 and 17.4 g/ks fuel at the design
fuel-air ratio. Only relatively small changes in NO x levels were obtained

with large variations in design configuration parameters, such as : the number

of swirl cans utilized, the ameunt of airflow through the swirlers or the

combustor pressure drop. The extrapolated NO x emissions level for the produc-

tion CF6-50 engine combustor at the AST operating conditions is approximately

17.2 g/kg fuel, All of these test configurations had combustion efficlencles

of 99.7 percent or higher at the AST cruise operating poiot.

The NOx emissions level of the Lean Dome Single Annular ComJmnstor configu-

ration was about 16 g/ks fuel at the &ST cruise operating point, This repre-

sents "_very small improvement over the production CF6-50 engine cembustor

operating _t these conditions, even though the overall dome fuel-air ratio was

markedly decreased a_d the combustor pressure drop substantially increased. It

was thus concluded that the local dome fuel-alr ratios were not being sufficiently
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reduced m_d-thaL the mixture--residence times at these high fucI-alr ratios

were too Long, Furthermore, it was also concluded that var'lable airflow
geometries would-he necessary to meet idle and relip_t performance requirements.

Iz_ the tests of the four Double Annular Combustor configurations, the
major geometry parameter varied was inner liner dilution air location -:nd

dilution airflow hole design, The NOx emissions level was reduced when the
d_lution airflow was moved upstream towards the dome. Also, the NOx emissions --
level was further reduced when the dilution hole geometry was modified to
obtain greater dilution air penetration into the dome region. A maximum
reduction in-NO x emissions level of about 41 percent was obtained at the AST

cruise operating point. At the AST cruise operating point, the combustion
efflcienetes of all test configurations were 99.8 percent or higher.

The results obtained with the Radial/Axial Staged Combustor configura-
tions illustrate the same relationships between combustion efficiency and NOx
emissions levels at the AST cruise conditions as were obtained with these

same configurations at the CTOL operating conditions. The NOx emission levels
varied from.about 6.5 to 9.2-g/kg fuel over the range of configuration

modifications tested at the AST cruise conditions. A maximum NO x reduction of
about 62 percent from the level of the production CF6-50 engine combastor at

AST conditions was achieved, but with a combustion efficiency of o1_ly about

97 percent. To obtain the target combustion efficiency (99.8 percent) with

this design concept, higher pilot stage fuel-air ratios were required and,

as the pilot stage fuel-air ratios were increased, the NOx levels were also
increased. Therefore, further design modifications that would improve main

stage combustion efficiency without a requirement for increased pilot stage

fuel-air ratios would be required to more closely approach the AST cruise

emlssions and performance goals.

Accordingly, the Double Annular Combustor configurations were fotmd to

provide the best combination of low NOx emissions levels and high combustion

efficiency performance, at the specified AST cruise operating conditions.

TASK 2 - AST CRUISE DESIGNS

Based on these screening test results, two Program Element 1-type and
two Program Element II-type combustor designs were defined as candidate
approaches for further development evaluations to approach the AST Addendum
pollutant emissions and performance goals. A description of each design is
presented in the following sections of this chapter.

Design Number 1 - Fuel Atomizer/Hish Flow 72-Swirl-Can
Combus tor Con fisuratton

The principle design technique used in this Program Element 1-type
configuration was to provide a lean homogeneous fuel-air mixture in the dome
region with no local fuel-alr equivalence ratios above 0.76. A sketch of this

design is presented in Figure 65. The combastor design consisted of the

72-swirl-can dome, with counterswirl outside swirlers. In this design the
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fuel was injected into each swirl can through small simplex pressure-atomizlng

spray nozzles attached to the existing fuel injector tubes. No intem_al
swlrlers were utllfzcd in the swirl cans in order to obtain the hi_lest

swlrl-can airflow possible with the existing hardware. The flat plate flame-
holders were designed to reduce the airflow around the flameholders and

direct a greater airflow through the swirl cans. In this manner, 30 percent
of the combustor airflow was directed through the swirl cans. Thus, a 50

percent i*Lcrease im swirl-can airflow over the previously tested swlrl-can
configurations was achieved. The outside swlrlers handled an additional 14

percent of the airflow, resulting in a total of 44 percent of the combustor
airflow through or i_nedlately surrounding the swirl cans. With this airflow

level through the 72 cans and swlrlers, an average fuel-air-mixture equivalence
ratio of 0.76 at the swirl-_an exit plane would result at the AST cruise point

fuel-air ratio of 0.02 3. The possibility of atomized fuel droplets migrating

upstream.of the combustor dome in the wakes of fuel injector tubes was
eliminated in this design by placing the fuel spray nozzle tip downstream of

the swirl-can air metering area cross section. Therefore, with a dome design

pressure drop of approximately three percent, it was considered unlikely that

upstream migration of fuel through thi_area-would occur.

Design Number 2 - Extended Perimeter 60-Swirl-Can

Combustor Configuration

The basic Phase I Program Swirl-Can-Modular Combustors were designed such

that the overall dome fuel-alr equivalence ratios in the order of 0.43 resulted

at the AST cruise point conditions, with the assumption of homogeneous mixing.

However, the basic Phase I Program test results showed that some of the dome

airflow passing around the flame stabilizers was not mixing homogeneously with
the fuel and swlrl-can air mixtures. In AST Cruise Design Number i, lean

homogeneous dome mixtures were created by employing pressure-atomized fuel

and. greatly increased airflow through the swirl cans. In this second Program

Element 1-type design (AST Cruise Design Number 2), lean homogeneous mixtures

were created by significantly increasing the wetted perimeter of the flat plate
flame stabilizers of the standard 60-swirl-can combustor. A sketch of this

design is presented in Figure 66.

The basic flat plate flame stabilizer for the swlrl-can configurations

was trapezoidal in shape with the overall blockage Being selected to control

dome pressure drop. The flat flameholder design was modified for this design
to redistribute the dom. open area by adding a series of radial slot openings
in each flameholder. In this manner, the wetted perimeter was increased to

approximately three times that of previous configurations with the same overall

blockage. This desi_* feature was intended to redistribute the flameholder

bypass airflow more effectively, relative to the swlrl-can exit fuel-air mix-
ture flow, and thus create a more uniform lean dome fuel-elf ratio mixture.
The 60-swirl-can dome array was used in this design because it provided the

largest wetted perimeter. In this design, the wetted perimeter was increased

approximately 50 percent, for the same blockage pressure loss_ over those of

the previously tested swlrl-can combustor conflguratlons.
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Desi_n Number 3 - Double Annular Combustor Confifluration

_le Double Annular Combustor configuration screening test results showed

that biasing both tile fuel and tile air flows to the inner annulus, such that
lean dome fuel-air ratios were obtained in both annnll and such that short

reaction residence times were obtained in the inner annulus dome, produced

reduced NOx emissions levels. Therefore, the AST Cruise Design Number 3 was
designed to further reduce the residence time in the inner annulus. This was-

accomplished by further biasing the airflow towards the inner annulus and

modifying the dilution air entry array of the inner annulus. A sketch of

this Program Element ll-type design is presented in Figure 67. Dilution holes
in the centerbody in combination with thimbled dilution holes in the first

inner liner panel were employed. The eenterbody dilution holes were intended

to further increase early air penetration and to provide more rapid fuel and
air mixing.

Design Number 4 - Radial/Axial Stased Combustor Confi_uratlon

The Radial�Axial Staged Combustor configuration screening results showed

that the airflow split between the pilot and main stages affected both the

NOx emissions levels and the overall combustion efficiency performsnce levels.

These results also showed that-increases in the pilot stage fuel-air ratio

improved combustion efficiency but that, to obtain low NOx levels, the pilot
stage had to be operated very lean and/or that most of the total fuel flow

had to be introduced into the main stage. The AST Cruise Design Number 4 was

defined using correlations of these data as guidelines. A sketch of this

second Program Element II-type _ombustor design is presented in Figure 68. The

two key design features of this configuration were: I) a further decrease in

pilot airflow rate, to permit a reduction in the amount of fuel introduced

into this stage; and, 2) the addition of turning vanes in the main stage air

chutes. The pilot airflow was reduced to approximately eight percent of the

total eombustor airflow, which was considered to be a limiting value without

major new hardware fabrication efforts. The turning vanes were added to reduce

stratification between the pilot stage gases and the main stage flow. The

design intent was to achieve an earlier ignition-of--the main stage fuel-air

mixtures by turning the flow inward to mix with the higher temperature pilot

stage combustion gases. Since the main stage combustion efficiency was found

to be highly dependent on the pilot stage fuel-alr ratio, or temperature level,

this dependence was interpreted to be dee to a main stage mixture ignition

delay effect. _lerefore, it was expected that the turning vanes would improve

main stage combustion efficiency without increasing NOX emissions.

Test Results

From these four designsp one Program Elemeat I-type design and one

Program Element ll-type design were subsequently selected for fabrication and

test. Assessments of these designs suggested that Design 2 of Element I-types
and Deslgn 4 of the Element If-types offered the greatest potential for

providing possible significant further reductions in NOx emissions levels at

the AST cruise operating conditions. These two designs were incorporated into
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the exit_ting baa[c Phase l Program hardware. Testa of these two configurations
(Conft.guratlon 111-1 asld 11[-2) were then conducted both at the specified AST
cruise conditions and at the CF6-50 colnbutltor operating conditions. The
results of the AST tests are Included in Table XLII1. Zn addltic.1, Designs 2

,_md 3 were also pursued as candidate designs in the basic program. In the
basic Phase 1 Program, both of the_e designs were built ;rod r.eetcd as Configu-
rations 1-16 ,'rod 11-16. As a port: of these latter tests, piggybacked
eval.uatiens at the AST cruise operating conditions were included. Thus, tests
of these two configurations were conducted as a part of the Task 1 .qcreening
tests, in which.13 configurations were evaluated, in piggybacked tests, at
the specified AST cruise conditions. The AST cruise data obtained with these

two test configurations are also included in Table XLIII. 4

Comparisons of the Task 1 and 2 test results showed that Design Number

i (Configuration 1-16) produced o NOx emissions level reduction of about 21

percent, relative to that of the production CF6-50 engine eomb_stor. AST

Cruise Design Number 2 (Configuration III-i) produced a reduction of about
12 percent. Thus, Design Number l, utilizing pressure-atomizing fuel spray

nozzles, produced the lowest NOx emissions of all the Swirl-Can-Modular

configurations tested at the specified AST operating conditions.

The desi_l intent of the /LBT Cruise Design Number 3 (Configuration 11-16)
was to further bias the airfAow split and to increase dome mixing in the
inner annulus. R_e results obtained with this design are presented in Figure

69. A 49 percent reduction in NOx emissions level was obtained relative to
that of the production CF6-50 engine combustor. Each configuration modifica-

tion to this combustor concept did result in progressively lower NOx emissions

levels, with no decrease in combustion efficiency. Thus, the Double Azmular

eombustor design approach was found to provide the best overall emissions and

performance characteristics at the specified AST operating conditions.

'l_e AST Cruise Design Number 4 (Configuration III-i) was a modified

Radial/Axial Staged Combastor configuration. The intent of this design was

to improve the main stage combustion efficiency by increasing the degree of

mixing between the pilot exhaust gases and the main stage mixture. With this
design, the overall combustion efficiency was significantly improved. }lowever,

its NOx levels were net si_llflcantly different from those of the previously
tested conflgurations. The resulting improved trade off between combustion

efficiency and NOx levels is illustrated in Figure 70. It is clear from

these data that for a given NO x level, a higher combustion efficiency was
achieved with the AST Cruise Design Number 4. However, at the target combus-

tion efficiency level, the NO x emissions level of this configuration wo.s
about the same as that of the current production CF6-50 engine combustor.

Based on these results, it appears that further Improvement is feasible

with this enmbustor concept. Since the data show that comb_qtlon performance

is sensitive to _he mixing interrelation between the pilot stage and main stage

g-_es, configuration development would logically include pi)ot stage reslzing

sLudies and the incorporation of improved m_xing devices _n the main stage:
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TASK 3 - .AS,T ENGINE CONCEPT DESIGNS

Numerous engine designs have been studied at General Electric for future

AST application, including both augmented and nonaugmented turbojet and turbo-
fan engines. For use in conducting these Task 3 design studies, a dual-rotor

turbojet engine, which had bean previously defined as a part of the General

Electric "Advanced Supersonic Propulsion System Technology Study" (Contract
NAS3-16950), was selected as the reference engine. _'ne combustor operating

conditions of this engine cycle closely approximated the nominal values

specified by NASA for use in conducting these design studies. The key
combuscor operating parameters for this-selected engine cycle are summarized
in Table XLIV.

Based on the results of the Task i and 2 design and development efforts,

two advanced combustor design approaches, the Double Annular and the Radial/

Axial Staged Combustor concepts, were selected for.the Task 3 design studies.

A configuration of each kind, sized to fit within the selected dual-rotor

turbojet engine combustor flowpath, was defined. The combustors were aero-

dynamically sized for sea level static takeoff engine operating conditions

consistent with normal engine design practice. However, the inclusion of key

geometrical features for controlling the fuel-air mixing process in the manner

required to reduce NOx emissions at the AST cruise conditions was the primary
consideration in these design efforts.

Radial/Axlal Staged Combustor Desi_,n Concept

The previously designed and tested Radial�Axial Staged Combustors of this

program were design-constrained by the existing envelope of the CF6-50 engine.

Thus, no changes to the existing engine diffuser design were made. However, for
the AST engine design applications, the diffuser an& cembascor were treated as

an integral design problem. Accordingly, a more optimum dlffuser/combustor

combination was designed to fit within the combustor flowpath boundaries.

The diffuser/combustor flowpath layout for the Radial/Axial Staged

Combustor installed in the AST dual-rotor turbojet engine configuration is

presented in Figure 71, This integrated design concept results in a short

length combustion system with very low diffuser pressure losses. This feature

provides the potential advantage of converting the pressure gained for addi-

tional fuel-air mixing which may be required during combustor development to
achieve the low pollutant emission and performance goals.

The diffuser design consists of two separate parallel diffuser systems.

Immediately downstream of the compressor exit station, the flow is divided

Into two screams; the large main stage stream and the smaller pilot stage
stream. The inner diffuser flowpath and pilot stage combustor dome configura-

tions are similar to the CF6-50 engine step diffuser and eombustor dome designs.

The inner passage prediffuser area ratio is 2.0 and the passage length-to-inlet

height ratio is 6.6 which places this design below the curve of no appreciable
stall on the Stanford diffuser correlations.
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Table XLIV. Summary of AST Engine Cycle Conditions.r

; Engine Selected for Combustor Concept Study:

i Dual-Rotor Dry Turbojet (GE21/J3 Study A2(PI); Case 2)

Flight Mode Supersonic Cruise SLS Takeoff

1 Cycle Parameter

_:I Altitude 18,288 m 0 m

Mach__Number 2.2 0

Thrust 72,533 N 276,417 N

SFC 1.29 0.884

W2 157.8 kg/s 358.8 kg/s

PAMB .07 arm 1.0 arm

TAMB 294 ° K 288 ° K

P3 6.6 arm 16.6 arm

T3 846 ° K 710 ° K
1644.9 ° K 1535.3 ° K

T4

W3 119.7 kg/s 311.6 kg/s

Wc 106.1 kg/s 284.4 kg/s

f 0.024 0.024
o
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i

i
The outer passage curves outward into the premixing duct of thc main

(or second) stage. An area ratio of 2.0 in this passage reduces _he flow

velocity to 91 m/s at the plane of fuel injection. The velocity level was

selected to prevent flashback or carbon formation without causing excessive

pressure losses. This diffuser design also falls below the curve of no
appreciable stall on the Stenford diffuser correlations. The fuel injector

tubes were designed into 48 large aspect ratio hollow radial struts which pass

through the outer passage near the downstream end of the outer diffuser. These
struts_ which enclose both the pilot stage and second stage fuel tubes, have a

maximum thickness of 9.2 percent of the chord length and have a total passage

blockage ratio of 18.4 percent.

_ The outer diffuser flow passage was designed to have very low pressure
losses, since the wall contours are continuous with no dumping losses and the

drag losses are minimized. This flow is accelerated across the main stage 1
flame stabilizers into the combustor with the absolute velocity vector almost

straight downstream.

More rapid mixing of the pilot stage and main stage flow streams would be

expected with appropriately designed flow turning vanes incorporated into the
flame stabilizer design. The turning vanes are not included in the conceptual

design presented since the extent of interstage mixing must first be determined

experimentally for the basic design. Accordingly, the addition of turning

vanes, if required, would be considered a development refinement.

The key design parameters of this combustor are sumsmrized in Table

XLV. The selection of design velocities is important for this concept.

The conventional reference velocity term is included in the table; however,
for a staged burner concept the pilot dome velocity and the main stage duct

velocity are more critical design velocity terms. Low pilot stage dome veloci-

ties have been employed to ensure high pilot stage efficieneies over the entire

engine operating cycle. The main stage flow velocities were selected consis-
tent with current afterburner design practice. Accordingly, achievement of

high performance in the main stage is critically dependent on the pilot stage

operating characteristics.

The procedure used for predicting the NOx emissions index for this Radial/

Axial Staged Combustor was based on the data correlations for both the pilot
stage end main stage burners obtained from previous testing in this program.

The calculated NOx emissions levels of this design are presented in Figure 72.

The NOx levels are shown as a trade off with overall combustion efficiency.
As is shown, the target NOx levels are predicted_ but not with the target

efficiency level of 99.8 percent. However, the attainment of the target NOx
level with a 99.8 percent efficiency is considered to be attainable with a

Radlal/Axial Staged Combustor concept of this kind with further improvements

in fuel-alr mixing, relative to _hose of the configurations previously tested.

18o
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Table XLV. AST Engine Radial/Axial Staged Combustor Concept,
Combustor Design Parameters.

Geometrlc

Mean Radius at Compressor OGV, am 53.98i

i' Annulus Height at Compressor OGV, am 7.29

Mean Radius at Turbine Nozzle Diaphragm, cm 69.34

Annulus Height at Turbine Nozzle Diaphragm, em 13.72

Overall Combustion System Length, cm 66.0

Combustor Length, cm 38.1

Ratio of Combustor Length to Dome Height, (Pilot) 2.73

Ratio of Combustor Length to Fuel Injector 5.56 {I)

Spacing, (Pilot)

Velocities

Reference Velocity @ SLS, m/s 37.8
Reference Velocity @ Cruise, m/s 43.3

Pilot Dome Velocity @ SLS, m/s 9.4

: Main Stage Duct Velocity
@ SLS (at Plane of Fuel Injector), m/s 86.0

Other Performance Parameters

Space Rate @ SLS (J/hr atm m3) 2.9 x I011

Fuel Loading Parameter 6.49 (2)

(Fuel Flow per Cup per arm - Pilot,

kg/hr/cup/atm)

(i) 48 injectors

(2) with 22 percent of the fuel in the pilot stage
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Figure 72. Estimated NOx Emission Levels, Radial/Axlal Staged
Combustor, AST Engine Concept Design.
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Double Annular Combustor Desibm Concept

The key design paran_.ters of tbls combustor are su_narlzed in Table
XLVI. The outer annulus was designed with a low dome velocity to ensure

high combustion efficiency and, thus, low CO and HC emissions at Idle power

operation. The combustor was designed to react approxlmately 87 percent of the
total fuel injected into the combustor in the inner annulus during high power i

operation. Therefore, the NOx emissions levels of this combustor design I

would be controlled by the design features of the inner annulus.---

The diffuser design selected for this combustor is a short length step ]

_I diffuser configuration with a central annular splitter vane. The splitter
]

vane divides the flow into two passages with the outer passage flow directed
to the outer annulus combustor dome and the inner passage flow directed to the
inner annulus combustor dome. Wlth this configuration, each eombustor dome

recovers a large proportion of the predlffuser exit velocity head. A flowpath

design layout fnr this Double Annular Combusto_ configuration installed in the

AST dual-rotor turbojet engine is presented in Figure 73.

For a given predlffuser passage length-to-lnlet height ratio, which is
the basis of the Stanford diffuser correlations, the diffuser splitter vane

shown reduces the length of the predlffuser. The area ratio of each passage

was set at 2.0, and the passage length-to-lnlet height was selected to place

each passage below the curve of no appreciable stall on the Stanford diffuser
correlations.

The estimated NOx emissions levels and combustion efficiency levels of
this Double Annular Combustor concept were based on performance measurements

obtained with the Double Annular Combustor configurations previously tested

in this program. The Double Annular Combustor configurations consistently

produced high values of combustion efficiency. The efficiency remained high

for either annulus operated separately or combined. Furthermore, significant

reductions in NOx emissions were achieved when dilution airflow was moved
upstream in the inner annulus. It was concluded from those test results that
reduced residence times in the inner annulus is a key parameter for reducing

NO x emission levels. Accordingly, this Double Annular Combustor was designed
with a moderately high inner annulus dome velocity. Its estimated NOx emission

levels were specifically calculated by using the emissions level data obtained
at the AST cruise condition with Configuration II-13. The estimated NO x level

at the selected AST cruise design point is 6.5 g/kg fuel. However, if the

inner annulus liner dilution air entry station can be successfully moved

further upstream, the estimated NO x emissions achievable would be ic_tered to
5.0 g/kg fuel. The final relationship between dilution air entry design, com-

i bustlon effielencyand NO x emissions level would of necessity be defined

during the development testing of the combustor. However, it is reasonable to

expect that this eombustor concept potentially could be developed with NOx

enLisslons levels approaching 5.0 g/kg fuel at the AST cruise operating condi-

tions, as defined in Table XLIV.
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Table XI,VI. AST Engine Double Annular Combustor Concept,
Cnmbustor Deslge Parameters.

Geometric

Mean Radius at Compressor OGV, cm 53.98

Annulus Height at Compressor OGV, em 7.29

Mean Radius at Turbine Nozzle Diaphragm, cm 69.34

Annulus Height at Turbine Nozzle Dlaphragm_ cm 13.72

Overall Combustion System Length, cm 68.33
Combustor Length, cm 35.56

Centerbody Length, cm 10.67

Ratio of Combustion System Length to Dome Height

Outer 2.73 (H_I4.0 cm)

Inner -- 2.38 (H=I6.0 cm)

Ratio of Combustor Length to Fuel Injector

Spacing( 1 )
Outer 5.6
Inner 5_35

Velocities

Reference Velocity @ SLS, m/s 27.4
Reference Velocity @ Cruise, m/s 31.4

Pilot Dome Velocity @ SLS, m/s 10.4 (2)

Main Stage Dome Velocity @ SLS, m/s __ 33.8 (2)

Other Performance Parm,cters

Space Rate @ SLS CJIhr atm m3) 1.9 x i011

Fuel Loading Parameter(3)(Fuel Flow per Cup per arm
kg/hr/cup/atm)

Outer Annulus 14.0

Inner Annulus 95.8

(I) 60 injectors

(2) Based on swirler Flus dome cooling flow

(3) With 22 percent of the fuel in the outer annulus

and 60 injectors in each annulus
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APPENI)IX A

DESCRIPTION OF CF6-50 COMBUSTOR

This appendix contains additional information concerning the design of

the current production CF6-50 engine combustor and the designs of the fuel
control and supply systems used with this combustor. This material is

intended as a supplement to the related descriptive material presented in
Chapter II.

The current production CF6-50 combustor is an annular design and con-
tains 30 fuel nozzles. An axial swlrler cup is used with each fuel nozzle.

A cross-sectional drawing of thi_ combustor, as installed in the engine, is

presented in Figure 3 and a photograph is presented _n Figure 4. The tom-
buster consists of four major sections which are riveted together into one

unit and spot-welded to prevent rivet loss: the cowl assembly, the dome

assembly and the inner and outer liner skirts. The combustor is mounted at

the cowl assembly by 30 equally-spaced radial mounting pins. Mounting the

combustor at the cowl assembly provides accurate control of diffuser dimen-

sions and eliminates changes in the diffuser flow pattern due to axial
thermal growth. The inner and outer skirts each consist of a series of cir-

eumferentially stacked rings which are Joined by resistance welded and brazed

joints.- The liners are film cooled by air which enters each ring through
closely spaced circumferential holes. Three axial planes of dilution holes

on the outer skirt and five planes on the inner skirt are employed to promote

additional mixing and to lower the exit temperatures at the turbine inlet.

At the engine compressor discharge plane, the Math number is 0.27 (with

a discharge coefficient of 0.90). This high velocity flow is diffused

through an area ratio of 2.0 in a relatively long, area-rule prediffuser.

Ten large frame struts pass through the diffuser near the aft end of the
prediffuser passage. The prediffuser walls are contoured to area-rule the

passage around these airfoil shaped strut sections. This area ruling mini-

mizes strut wakes and strut-wall interference effects. The passage area is
then held constant for a distance of about 5.1 cm downstream of the strut

trailing edges to mix out any remaining strut wakes. This design approach-
has proved to be very successful. Test results show that the strut wakes

cannot be detected in the inner and outer passage airflows or in the temper-
atur_distributions at the combustor exit plane.

At the exit end of the prediffuser passage, the flow is dumped into the
combustion chamber at a low Math number and with low pressure losses. The
flow is then divided into three streams. The inner and outer streams are

accelerated smoothly around the combustor cowling contours into the inner and

outer liner passages. The center stream enters the cowling and, in turn,

flows into the combustor primary zone. The cowling opening is oversized to
provide free stream diffusion of the dome flow, which increases the static

pressure recovery ahead of the dome. This feature results in high pressure

recoveries in this center stream and, therefore, in higher pressure drops and

higher velocities through the swirl cups and other dome flow openings.
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A schematic of the CF6-50 engine fuel system J_ shown in Figure 74. The

! main engine co_trol is a hydromeehanJcal unit which metoro eombustor fuel

flow to maintain the desired engine speed selected by the throttle. The

response of the control to power demand inputs is continuously biased by

compressor inlet temperature, compressor discharge pressure, and core engine

rotor speed. Metered fuel from the control flows through the fuel manifold
into 30 fuel nozzles. The fuel nozzles are the dual-orlfice type with an

integral flow divider, A diagram of the fuel nozzle assembly is shown in

Figure 75. The dual-oriflce nozzle system provldes prlmary and secondary
flows for proper fuel atomization during all phases of engine operation. The-----
30 fuel nozzles are individually installed through__pads in the compressor
rear frame.

i

The fuel manifold is a slngle-tube unit which distributes the metered
fuel to the 30 fuel nozzles. A schematic of the CF6-50 fuel manifold is

shown in Figure 76. I%e assembly, including the 30 feeder tubes, is shrouded

for protection against fire and high pressure leaks. It is divided into

right and left halves, each of which supplies 15 feeder tubes. The manifold----
is supplied by a single tube which enters the core engine compartment from

the fan accessory compartment through a sealed Junction trap.

The inner and outer combustor liner shells Join the dome structure at
the forward end of the.shells. These liner shells are film cooled with a

"stacked ring" structure. The f1±m cooling features of this desi_ maintain

the average peak metal temperatures in the various cooling rings at or below
1088 ° K. -The outer shell has three bands of dilution holes and the inner

shell has four bands of dilution holes. These holes are carefully sized and

placed to provide the required turbine inlet temperature profile and the

lowest possible pattern factor. The mechanical and structural features of
these liners are designed to meet extended cyclic llfe requirements. The

total life requirements of this design are as follows:

Operating Hours 18,000

Thermal Cycles* 30,000
Normal Maintenance & Repair Hours 6,000

Normal Maintenance & Repair Thermal Hours 12,000

* Two Thermal Cycles per Flight Cycle

I
I
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Figure 74. CF6-50 Engine Fuel System.
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Figure 75. CF6 Fuel Nozzle Cross S_,ction,
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Figure 76. CF6-50 Engine Fuel Manifold Assembly,
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APPENDIX B

POLLUTANT EMISSIONS SA_fl_LINC/ANALYSIS SYSTEM AND A_SOCIATED TESTING PROCEDURES

This appendix contains additional information concerning the equipment a_d

procedures used to measure the pollutant emissions characteristics of the

various comhustor test configurations. This information is intended as a

supplement to the related descriptive material presented in Chapter II.

E}aLEUST GAS ANALYSIS EQUIPMENT

The pollutant emissions data were obtained in this program with an on-line

gas analysis system. With this system, _xhaust gas sample streams were con- J
tinuously processed and the CO2, CO, HC, smoke, NO and NO 2 concentrations!
were continuously determined. A flow diagram of the system is shown in Figure

21. A photograph of the on-line gas analysis system installation used in the

Phase I Program is sho_n in Figure 77. The five basic instruments for measuring

the gaseous emissions concentrations in this on-llne system are a flame ioniza- j
tion detector (FID) for measurements of the total HC concentrations, two non-

dispersive infrared (NDIR) analyzers for measurements of the CO and CO2 concen-
trations and _ heated chemiluminescence analyzer for measuring the NO and NO 2
concentrations.

A Beckman model 402 flame ionization detector is utilized in this system.

This analyzer was designed specifically for determining the total HC concentra-

tions in gas turbine engine exhaust gases. It consists of a heated inlet sample
llne, an ionization analyzer module, and an electrometer amplifier module.

The nondispersive infrared (NDIR) analyzers used in this system to measure

CO and CO 2 concentrations are Beckman models 315B and 864, respectively. A
water trap is installed upstream of the analyzers to provide dry samples for

analysis.

The chemiluminescence analyzer used to measure NO and NO 2 concentrations
is a Beckman model 951 instrument. The NO in the sample gas is measured

directly with this instrument. The internal temperature of the analyzer flow-

paths is controlled at about 328 ° K to prevent moisture condensation within

the system. The measurement of the total NO x concentration of the exhaust

gas is accomplished by the use of a thermal converter. With this device, NO2
in the gas sample is reduced to NO and oxygen as a result of heating the sample

to a prescribed temperature for a given period of time. When the sample

leaving the converter is passed through the NO analyzer, a reading is nbtained

that is equal to the NOx concentration (the sum of the newly formed NO plus

the NO present in the original stream).

None of the foregoing analyzers measures quantitatively without being
calibrated. There is no electrical calibration signal that can be used to !

simulate an actual reading, such as millivolt simulation for temperature in
the case of thermocouples. The standard General Electric analyzer calibration

procedures were used throughout the program. These calibration procedures
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involve the use of calibration gases having nominal concentrations of CO, No,

NO2 and propane in nitrogen and oxygen mixtures which are obtained from an

appropriate vendor. The vendor prepares the mixture of the gases by the use

of partial pressures or gravlmetrlcally and then analyzes the gas in the bottle.

The precision of the ealibration procedure is obtained by requiring the supplier
to guarantee that all of the constituents in the hottle are within five percent

of the nominal value specified and that the accuracy of the analyses meets the
following criteria:

Constituent Concentration RanBe Analysis Accuracyj

i0 - 15% + 2% Relative

C' 50 ppm - 10% _ 3% Relative

I0 ppm - 50 ppm _ 5% Relative

In addition, helium, argon, and other impurities must be held to a minimum

and be listed in the chemleal analyses if over i0 ppm.

The zero on each NDIR instrument is set by using dry nitrogen, which has

been checked for the absence of H2, CO, CO2, and NO. All of the NDIR dual
cell instruments have three full-scale ranges per cell whleh makes a total of

six scale ranges available. The CO2 analyzer is a single-cell instrument

having only three scale ranges available. Range I is the least sensitive, the

second range can be set up to three times the first range, and the third range

can be set up to nine times the first range. The zero of the FID analyzer was
set by using ultrapure breathln_ air.

The CO, C02, HC and NOx analyzers were electronically integrated with the

test cell digital data acquisJtion system. At each test condition, this

digital system automatlcally scanned the numerous eombuston operating

parameters being monitored and converted the amplified DC signals of each

measurement to digital form. These data were recorded on a printed paper
tape and simultaneously transmitted to an on-llne computer. Thus, at each

traverse position, the outputs of these on-llne emissions analyzers were
automatically recorded and transmitted to the computer along with the normal

eombustox operating data.

A new emissions data reduction program was developed for use in this Phase

I Program and was incorporated into the existing CF6-50 combustor performance
data reduction program. This new data reduction proRram provided on-llne

calculations of the exhaust emissions concentrations, the various emissions

indices, Bas sample combustion efficiency values and the gas sample fuel-alr

ratio value at each traverse position for any given test condition. The
output from this data reduction program was transmitted back to the test cell

teletype, and the reduced data were, thus, available shortly after the comple-

tion of a test point. With this automatic emissions data aqulsition system,

a normal 12-position manifolded traverse could be completed in about 15
minutes. Within another i0 to 15 minutes, the measured emissions levels and
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combustor performance data were available within the test cell. An overall

schematic of the emissions data acquisition system is shown in Figure 78.
The gaseous emissions sampling equipment used in this program was in general

conformance with the SAE ARP 1256 guidelines, except for the use of a cheml-

luminescent NOx analyzer.

Smoke emissions were measured in this program using the standard General

Electric filter stain method. With this method, a measured volume of sample

gas is drawn through a filter paper. The smoke particulates filtered out of

the sample gas leave a black stain on the white paper. The "blackness" of the
spot is measured on a reflection densltometer. The densitometer is calibrated

against absolute reflectance standards. Readings are converted to a sample

flow flux of 0.0016 kg of exhaust gas per square cm of filter paper before
• _| computing to provide a smoke emission value in terms of the SAg Smoke Number.

The entire General Electric smoke measurement system is packaged into a por-

table console that also contains a pump, control valves_ and flow metering

devices. One of the smoke measurement consoles is shown in Figure 79 and a

flow diagram is shown in Figure 80. This General Electric smoke measurement

technique is in conformance with SAE ARP 1179.

EXHAUST GAS SAMPLING EQUIPMENT

The gas sample rakes used in this program contained multlelement, quick-

quenching probes which utilized both-water cooling of the probe Body and steam

heating of the sample lines within the probe. Each rake contained five individual

probes,or elements, and each element was led out of the rake-separately. There

was no co_mon manifolding of these sample lines within the sampling rake. The

! tips of each of the'e sampling elements, shown in Figure 81, were designed to

_! quench the chemical reactions of the extracted gas sample as soon as the sample

entered the rake. This quenching, or freezlng_ of the reactions was necessary

to eliminate the-posslbillty of fu=ther reactions within the sample lines.

Water cooling of the rake body was required to maintain the mechanical integrity
of the rakes in the high temperature, high pressure environment in which they

operated. Steam heating of the sample lines within the rake, on the other hand,

was needed to maintain these sample lines at a temperature high enough to pre-

vent condensation of hydrocarbon compounds and water vapor within the sample
lines. A schematic of the steam-heated/water-cooled feature of these gas

sample rakes is shown in Figure 19.

With 5 sampling rakes with 5 elements each, a total of 25 gas sampling

locations existed within the eombustor exit plane at each angular position of

the traverse assembly. Of the 25 available probe elements, however, only 15

were used for gaseous emissions sampling, with the remaining i0 elements used

for combustor exit pressure measurements and smoke emission sampling. A

selector valve in each of these latter ten sample lines allowed either smoke

or exit pressure to be read at any selected angular position. The individual

rake elements selected for the gas sampling measurements are shown in Figure 20.

During each survey of the eombustor exit plane, the comhustor exit pres-

sure was determined at only the first rake position, and smoke was measured
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during the remainder of the survey. Caseous emissions were measured at each
rake position of the survey. As a result, exit pressure, smoke, and gaseous
emissions data were obtained from numerous ]ocations with the eomhustor exit

plane, as shown in Figures 82, 83 and 84. In this manner, a very detailed and
accurate measure of ,:he emissions levels was obtained at each test condition.

After leaving the rakes, the individual gas sample lines were led to a
series of selector valves and then to the emissions analyzers located within
to the test cell. 1%ese sample lines were grouped into bundles of five lines

I (one bundle for each gas sample rake), and each bundle was steam-traced from
the probes to the analyzers, as shown in Figure 85, to maintain the sample
line temperatures near 422 ° K. Each sample llne was constructed of 0.b4-cm

diameter, 0.089-cm wall stainless steel tubing. Two thermoeouples were

installed in each tube bundle, as shown in Figure 85, to monitor the tempera-

ture of the steam used for heating the sample lines. In addition, one sample j
llne from each bundle was instrumented to provide a measurement of the pressure

q

wlthi_ the sample llne. This pressure measurement provided assurance that

sufficient flow was being drawn through the sample lines to aueneh the reactions

at the probe tips.

In the test cell control room, the 25 individual sample lines were con-

nected to a group of 3-way selector valves, as shown in Figure 86. At this

panel, the ten smoke/pressure elements were separated (by the valvlng arrange-
ment) from the gaseous emissions elements. By manipulation of the approDrlate

valves, any individual clement or any desired combination of elements could

be selected for the gaseous emissions measurements. The normal procedure used

was to manifold all 15 gas sample elements together at this control valve

panel, thereby supplying 1 average gas sample to the emissions analyzers at

each traverse position. This manlfoldlnq procedure was a very fast method of
determining the average level of the various emissions at the circumferential

traverse position and alleviated the need to analyze each sampie individually
at every traverse position of a given test condition.

EXHAUST GAS SAMPLING PROCEDURES

Because of the wide variations in fuel staging techniques which were in-

vestigated as a part of this program, various exhaust gas sample manifolding

techniques were employed. The normal procedure was to manifold together only
gas samples which had nearly equal sample densities, in order to provide

properly weighted results. During normal fueling points (eombustor fueled

uniformly) all the various gas samples could be manifolded together. On

points where only one annulus, or stage, was fueled, only samples from the

same radial immersion were combined, due to the large radial gradients which

could exist. On points where only a sector of the ccmbustor was fueled, only

samples taken from the same circumferential positlun were manifolded together
because of the strong circumferential varlatlons.

During these tests, one of the following sampling modes was used on every
test point for determlnln_ the gaseous pollutant emissions concentrations:
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s Normal Sampling Mode - Tn tbls mode, which was used for about 75

percent of a11 test points, all of the 15 available gas sample lines

were manifolded together, and i average gas sample was supplied to

the emissions analyzers at each traverse position of a test point.

This technique was usually employed whenever both annull, or stages,_
of the combustor were fueled and-the eombustor exit temperature

distribution was relatively uniform.

• Radial Immersion Sampling Mode- In this mode, which was used for

about 20 percent of all test points, only gas samples extracted from

the same radial immersion were manifolded together. The three
sample lines from the first radial immersion were manifolded to-

gether, and the exhaust plane was sampled at four rake traverse

< positions. The traverse was then returned to its original position,
the first immersion sample lines were valved to a vent manifold, and

the three sample lines from the second radial immersion were sampled

together at four traverse positions. This process was repeated until

all five radial immersions had been sampled at four traverse positions.

This sampling mode was usually used when fuel was supplied to only

one annulus or stage of the combustor. Upon occasion, this sampling

mode was also employed on points where the eombustors were fueled

uniformly, in order to obtain detailed emission profile data from

the eombustor exit plane. Points which were sampled both in this

manner and in the normal sampling mode showed very good agreement
w/th-respect to measured average emissions levels.-----

• Indlvidua! Rake Samplin_ Mode - In this sampling mode, used almost
exclusively for sector fuel staging test points, the gas samples

from only one exit gas sample rake were manifolded together and

samples were taken at 12 rake positions. The traverse was then

returned to its original position, and all the elements from a

second rake were manifolded together and sampled over 12 rake

positions. This process was then repeated until all the desired area

in the exit plane had been surveyed. Usually,_however_ only two

rakes were sampled. One rake, which began its traverse in a non-

fueled region and ended its traverse in a fueled region, was sampled--

to define the hot/cold zone interface. Another rake, whose entire

traverse was in a fueled region, was also sampled to define the

emissions levels within the burning zones.

• Rich Density Ramplin_ Mode - This mode, which was used infrequently,
is identical to the normal sampling mode, except that the fully mani-

folded samples were extracted at 24 rake positions (3 degrees apart)
in the combustor exit plane, instead of Just 12 positions. This

technique was generally used to better define the pattern and profile

factors for the test condition, and to provide a denser eollectlon of
gas samples from which to determine the average emissions levels. The

emlsslone levels determined from the normal mode and the high density

mode were usually in excellent agreement.
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During some of these combustor tests, smoke emissions levels were also !
• measured at selected test points of interest. These levels were generally !

not measured on testa where the maximum eombustor inlet pressure level was

_ less than seven atmospheres, since the smoke levels at such low pressure !
levels would be too low to he accurately determined. The smoke levels of the

CF6-50 production combustor are already very low avd the smoke levels of the

various Phase l Program configurations were expected to be even lower. Thus,
smoke emissions characteristics were generally not considered to he of

concern. On those conditions where smoke data were acquired_ samples were

extracted from the oombustor exit plane with ten elements, as shown in Figure

20. These te_ elements were manifolded together to provide one average sample

to the smoke meesurement consol_. At least three smoke spots were taken at

each test condition and the average SAE Smoke Number for this operating point

was-determined from the average of these three spots.

The normal General Electric procedure for measuring smoke levels is to.

extract several 0.0057 cubic meter samples, hut due to the low smoke levels of

most of the combustor configurations of this program_ larger samples of 0.0198
cubic meters were used. With this size sample, more accurate reflectance

measurements could be obtained because the spots were darker. This is also

about the largest size spot which could be used to obtain three smoke spoAs in

the time required for a normal traverse of the combustor exit plane.

I
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APPF_DIX C

SUMMARYOF TEST RESULTS

This appendix contains summaries of the operating conditions, eombustor
performance data end exhaust emissions data-of each test conducted during this

entire program, including the tests conducted as a part of the AST Addendum.

These tables are o_dered according to Program Element and configuration number

within each element. Descriptions of each of the various test configurations
and the key results obtained with these configurations are presented In

Chapters III and IV.

The sequence in which the tests were conducted is presented in Table
XLVII. All of the data obtained in these tests are summarized in thls-

appendix. All of the NOx data are presented in two forms, as measured and
adjusted to the hot day SLS takeoff operating conditions of-the CF6-50

engine. All of the data in these tables, except in the two tables containing

ignition data, are grouped according to simulated engine power setting. The

nominal eombustor inlet total temperature for CF6-50 standard day idle, CF6-50

hot day approach, CF6-50 hot day climbout, CF6-50 standard day takeoff, CF5-50
h_t day _akeoff, CF6-50 standard day cruise and.AST cruise are 454, 661,

825, 810, 858, 733 and 833 ° K, respectively. With the use of these nominal tempe

ature values, the intended combustor operating condition may be ascertained

for the various test points contained in the data summary tables. Additional

information on the operatin 8 conditions used in conducting the elevated
pressure tests is presented in Table Vl of Chapter If.

The actual measured total pressure loss values are presented in the.

data tables. In the assessments of these data, which are presented in

Chapters III an_ IV, these measured pressure loss data were adjusted using

conventional corrections to the proper combustor reference Math number and

temperature rise ratio whenever the test conditions did not duplicate the
CF6-50 engine combustor operating conditions.

In the data tables, only the measured combustor airflows are shown

for the sake of brevity. In conducting the tests, the total airflow and
the bleed airflows were actually measured and the combustor airflow was
obtained as the difference between these two measured values. Nominally,

the combuS_o___ai_as 84 percent of the total inlet airflow.
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Table XLVII. Experimental Clean Combustor Program Test Sequence.

Maximum
'rest Conditions

Final Attained

Run- Test Configuration AST Cruise Noise Reading T3 P3
No. Date Number Test Points Measurements Number °K atm

1 10/15/73 II-I 11 462 3.4
2 I0/16 II-i 16 459 3.4
3 10/17 II-I 27 773 9.5
4 10/18 II-I 45 860 9.6

5 10/22 I-i 61 673 7.3 (i)
6 11/1 1-2 70 825 9.5 (1)
7 11/24 I-3 83 661 7.2 (1)
8 11/26 I-4 97 456 3.4
9 ii129 11-2 Yes 126 860 9.6

I0 12/10 1-5 146 864 4.8
II--i/17/74 11-3 162 859 4.8
12 1/22 1-6 176 856 4.8
13 1/26 11-4 195 859 4.8
14 1/29 1-7 209 823 4.8
15 1/31 II-5 218 855 11.5
16 2/5 11-6 237 734 4.8
17a 3/1 11-7 242 455 3.4

17b 3/4 11-7 Yes 286 832 6.9

18 3/7 11-8 303 739 4.8 (i)
19 3/22 I-8 Yes Yes 335 856 6,8
20 3/27 I-9 358 861 4,8
21 4/i II-9 Yes Yes 386 863 7.2

22 4/4 11-10 Yes 415 836 6.9
23 4/9 1-10 Yes 449 860 4.8
24 4/17 II-ii Yes Yes 478 857 6.8

25 4/22 I-ii 496 716 4.8 (I)
26 4/26 11-12 Yes 516 868 4.8

27 4/29 11-12 Yes Yes 526 859 7.1
28 5/1 1-12 Yes Yes 569 860 6.8
29 5/3 II-13 Yes 586 865 6,7
30 5/7 II-14 Yes 614 858 7.3

31 5/10 1-13 634 826 4.8 (i)
32 5/14 II-15 4 301 1,0 (2)
33 5/15 11-15 668 857 9.5
34 5/17 II-15 682 851 9.6

35 5/22 1-14 Yes 708 788 4.8 (i)
36 5/24 11-16 711 298 1.0 (2)
37 5/28 11-16 Yes 746 859 4.8

38 6/5 1-15 4 294 1.0 (2)
39 6/5 1-15 766 868 3.4

40 6/10 1-15 768 885 6.7 (3)
41 6/13 III-I YLS Yes 793 865 6.8

42 6/18 1-16 Yes Yes 806 828 4.8 (3)
43 6/27 III-2 Yes 837 863 6.9

(i) Maximum test conditions limited by combustor metal temperatures.
(2) Ignition test.

(3) Maximum test conditions limited by upstream burning.
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